
Assignment 0: Groups & Projects

CS3213 Foundations of Software Engineering (AY21/22 Sem2)

Submission Deadline: Fri 14/01/2022, 11:59 pm

• Note that this is not a typical assignment sheet, as it is meant for your preparation for the course.

• Any questions can be posted in the LumiNUS forum.

• If the LumiNUS forum should not (yet) be available, or you should have any personal question which
you do not want to share with others, feel free to drop an email to yannic@comp.nus.edu.sg.
But note that any general(izable) question submitted via email will just be copied to the forum
and answered there. Therefore, we recommend to use the LumiNUS forum whenever possible.

• There will be no marks for this sheet, but finding a group and a project will be necessary to
participate in the lab.

Overview

All lab assignment in CS3213 (except for Assignment 1) need to be submitted in groups. Therefore,
it will be crucial to have your group ready for action as soon as possible. We are not going to assign
random groups, so it will be your task to form groups. Furthermore, CS3213 is accompanied with a
software engineering project, for which you need to select a topic for your group.

In this assignment sheet we take the opportunity to present the overall system idea and the available
project topics, which you can pick as a group project. You can already make yourself familiar with the
topics, conduct some readings and collect background knowledge. This way you save time during the
semester and you can make an informed decision when selecting a topic.

Task 1: Find a Group!
For the future assignments and project works, you will need to form groups of 3-4 students. Note
that the members of your group need to be in the same tutoring group. Please coordinate with
your fellow students, e.g., by using the forum in LumiNUS. For all future assignments (except for
Assignment 1) it will be mandatory to submit solutions as a group.

As long as the LumiNUS module is not available yet, you can enter your temporary group and project
selection in this Google Sheet: https://docs.google.com/spreadsheets/d/15sk6WnvQHTjClhMi_
TUuyDkylow6lOmMHVhD5n3Qu-I/edit?usp=sharing. We will later take care of porting the groups
and project selections to LumiNUS.

Task 2: Pick a Project!
Within your group, you need to select one particular project to work on during the lab. The project
specific tasks will start with Assignment 4, in which you will design your project’s implementation.
It is important that you as a group make this selection so that everyone in the group is committed to
the project. The projects are different and concern different aspects of the overall system. So read
the descriptions carefully and do some background check of the topics.

https://docs.google.com/spreadsheets/d/15sk6WnvQHTjClhMi_TUuyDkylow6lOmMHVhD5n3Qu-I/edit?usp=sharing
https://docs.google.com/spreadsheets/d/15sk6WnvQHTjClhMi_TUuyDkylow6lOmMHVhD5n3Qu-I/edit?usp=sharing

CS3213 Foundations of Software Engineering (AY21/22 Sem2) – Assignment 0 Page 2 of 18

!" Intelligent Tutoring
System

Teacher/
Tutor

Student
(Novice

Programmer)

Reference Program,
Test Cases

Grading Reports Feedback

Submission

Idea of the Course Project

yannic.noller@nus.edu.sg National University of Singapore 2

❏ The lecture provides software engineering methods, theory, models,
patterns, etc.

❏ The lab provides application of the software engineering principles.
❏ Not just any project but related to our research including real

customers at NUS.

Figure 1: High-Level Overview

System Overview and Available Projects

The high-level idea of the Intelligent Tutoring System is to introduce an automated technique to provide
feedback and grading suggestions for programming assignments. As shown in Figure 1, for a given
programming assignment, the tutor would provide a reference solution and some test cases, while the
student would submit a solution and would receive feedback for that. The feedback should go beyond
the simple execution of test cases, but should tell the student where and how to fix the submission. More
sophisticated and gradual ways of feedback could be also introduced.

Developing such a system includes many conceptual and technical challenges. We summarized some
of them into projects, from which you will need to choose one for this course. Please find below a
collection of all projects, and more detailed descriptions on the following pages. We group projects by
their provided functionalities. Each project has assigned estimated difficulty levels (Low, Medium, High)
in the categories: coding (i.e., programming intensity), theoretical complexity (i.e., need for background
study), amount of research involved (i.e., be innovative and create something new), and the involvement
of HCI (Human-Computer Interaction) aspects.

Topic 1 – Parsing

Project 1.1 C Parser : Develop a parser to transform C programs into a (provided) common data
structure based on the control-flow graph (CFG). Additionally, provide a concretizer,
which back-transforms the program in the internal common data structure to a C
source file.
[Coding: High, Theory: Low, Research: -, HCI: -]

Project 1.2 Python Parser : Develop a parser to transform Python programs into a (provided)
common data structure based on the control-flow graph (CFG). Additionally, provide a
concretizer, which back-transforms the program in the internal common data structure
to a Python source file.
[Coding: High, Theory: Low, Research: -, HCI: -]

Topic 2 – Aligning / Matching of Programs

Project 2.1 CFG-Based Alignment : Develop an automated alignment of the reference program and
the submitted program based on the basic blocks of the programs’ control-flow graph
(CFG) representation. This also includes the development of an automated mapping
for the variables between the reference program and the submitted program.
[Coding: Medium, Theory: Medium, Research: Low, HCI: -]

Topic 3 – Error Localization / Program Interpretation

Project 3.1 C Interpreter : Develop an interpreter that allows to execute a C program with regard
to the basic blocks in its CFG. Further, use the provided test cases to identify the
root cause of the problem with regard to the basic blocks in the CFG. Implement an
error localization that compares the execution traces of a reference program and the
submitted program.
[Coding: High, Theory: Medium, Research: -, HCI: -]

Project 3.2 Python Interpreter : Develop an interpreter that allows to execute a Python program
with regard to the basic blocks in its CFG. Further, use the provided test cases to

CS3213 Foundations of Software Engineering (AY21/22 Sem2) – Assignment 0 Page 3 of 18

identify the root cause of the problem with regard to the basic blocks in the CFG. Im-
plement an error localization that compares the execution traces of a reference program
and the submitted program.
[Coding: High, Theory: Medium, Research: -, HCI: -]

Project 3.3 Error Localizer : Conduct a literature study on error localization. Develop at least two
error localization algorithms from different domains (e.g., statistical fault localization
and analysis-based fault localization) for the provided framework and evaluate their
efficacy.
[Coding: Medium, Theory: High, Research: Low, HCI: -]

Topic 4 – Transforming / Repairing Programs

Project 4.1 Refactoring-based Repair : Develop a repair workflow that first generates semantic-pre-
serving refactorings of a reference program so that it increases the chances of a structural
alignment with a submitted program (see Project 2.1). Afterwards, it uses a matching
refactoring to repair the submitted program by mutating program expressions. Strive
for a minimal repair which satisfies the failing test case(s).
[Coding: Medium, Theory: Medium, Research: Medium, HCI: -]

Project 4.2 Optimization-based Repair : Develop a repair algorithm that (1) generates local repairs
at each basic block by matching the submission and the reference solution, and (2) de-
termines the complete repair (i.e., a subset of local repairs) by using some optimization
strategy, which minimizes the overall repair cost.
[Coding: Medium-High, Theory: High, Research: Low, HCI: -]

Project 4.3 Synthesis-based Repair : Develop a repair algorithm that searches for a repair by synthe-
sizing program expressions. The synthesis will be driven by the available components
at the specific source location. It requires a specification inference, which results in a
repair constraint.
[Coding: Medium, Theory: High, Research: Medium, HCI: -]

Topic 5 – Feedback Generation

Project 5.1 Automated Feedback : Develop a feedback mechanism to summarize all obtained results
in an appropriate and comprehensible manner for the user. For example, show root
causes of the problems and provide explanation by annotating the code.
[Coding: Low, Theory: Medium, Research: Medium, HCI: High]

Project 5.2 Automated Grading : Develop a automated grading mechanism, which is beyond simple
output of passing and failing test cases, e.g., it should take into account the necessary
effort for fixing the submitted program.
[Coding: Low, Theory: High, Research: High, HCI: Low]

CS3213 Foundations of Software Engineering (AY21/22 Sem2) – Assignment 0 Page 4 of 18

1 Parsing

1.1 C Parser

Overview: The goal of the parser (C or Python) is to generate the intermediate program model from
the raw source code. In general, the entire parser workflow covers three different aspects:

1. Generation of the Abstract Syntax Tree (AST).

2. Generation of the Control Flow Graph (CFG).

3. Generation of the Single Static Assignment (SSA).

Additionally, this project should provide a concretization functionality, which takes the intermediate
program model and produces an actual source file (C or Python). We recommend to first work on
the parser functionality because the learned concepts can then easily be applied on developing the
concretization part. Furthermore, both components (a parser and a concretizer) can be nicely integrated
and tested.

Complexity: [Coding: High, Theory: Low, Research: -, HCI: -]

Prerequisite and References: To work on the parser (C or Python) project, the students need to
understand the principles of a Lexer, a Parser, and the Abstract Syntax Tree (AST). Furthermore, they
need to develop an understanding of the Single Static Assignment (SSA) principle and the concept of a
Control-Flow Graph (CFG). The following references can help to prepare for this project:

• https://www.sciencedirect.com/topics/computer-science/abstract-syntax-tree

• https://www.sciencedirect.com/topics/computer-science/control-flow-graph

• https://www.cs.cmu.edu/~fp/courses/15411-f08/lectures/09-ssa.pdf

• https://www.antlr.org

• https://github.com/antlr/antlr4

Assumptions and Dependencies:

• Inputs: Source code of a program.

• Outputs: Intermediate model of the given program, or in case of the Concretizer, again the seman-
tically equivalent program in source code.

• Dependencies: This project depends on the definition of the intermediate model for a Program

in our system. This data structure cannot be changed by the students as all other projects and
system components depend on this definition. Additionally, it will have access to auto-generated
ANTLR files that can be used for the project, however, the students are allowed to decide for a
different implementation direction.

Abstract Syntax Tree (AST): The first step for the parser module would be to generate the abstract
syntax tree. This requires a lexer to separate the individual characters in the raw source code into
meaningful tokens. These tokens will then be the leaves of the AST. The intermediate nodes in the
AST are representative names that identify the type of children it has. Coding a lexer and a parser from
scratch is an excruciatingly difficult task due to all the possible edge cases that one may need to consider.
We instead decided to use ANTLR to generate a large extent of the parser code for the following reasons:

1. ANTLR is open-source. There exists a high level of documentation and support for students to
refer to.

2. There is exhaustive grammar for most popular programming languages, and this allows for scala-
bility for this implementation.

https://www.sciencedirect.com/topics/computer-science/abstract-syntax-tree
https://www.sciencedirect.com/topics/computer-science/control-flow-graph
https://www.cs.cmu.edu/~fp/courses/15411-f08/lectures/09-ssa.pdf
https://www.antlr.org
https://github.com/antlr/antlr4

CS3213 Foundations of Software Engineering (AY21/22 Sem2) – Assignment 0 Page 5 of 18

3. A good level of support for most popular IDEs.

4. The syntax for grammar is not too difficult to comprehend, students should be able to change them
if there is a need to.

Apart from generating the lexer and parser, ANTLR also generates visitor and listener classes, which
intuitively follows the visitor pattern and observer patterns respectively. In particular, the visitor class
provides a good level of flexibility to choose which children nodes to visit directly. Therefore, this class will
be responsible for traversing through the generated AST from ANTLR, and for extracting the relevant
locations and expressions needed for our intermediary program model. While this is in favour of a more
fine-grained control of traversing through the AST, it is notable that the generated AST contains a lot
of nodes, even for a trivial program due to the exhaustive grammar provided. During implementation,
students must be careful to invoke the visit() method to all the node’s children, else some sub-trees
will not be visited.

Control Flow Graph (CFG): The intermediary program model follows the standard control-flow
of the program. Each node of the CFG is denoted as a location. Below is an explanation of how the
common types of expressions are handled.

If-else statements – Note that for our model, branching of the if-else statements occurs at the same
location. This is represented by the special variable ‘ite’. The format for the ite operator is as such:

ite(<conditional expression >,

<true branch expression >,

<false branch expression >)

The table below illustrates a simple example:

Program Parsed expression Location Number

int isEven(int a) {

if (a % 2 == 0) {

return 0;

} else {

return 1;

}

}

$ret = ite((a%2==0) , 0,1) 1

Note: this optimization of the if-else branch only occurs when there is no looping structure within
the if-else statements.

For-loop – Since the CFG should represent the loop structure of the program, this program is split
into different locations (i.e., different nodes in the CFG). The following listing shows a simple for-loop,
and the following table shows how this specific code should be parsed by the parser project:

1: #include <stdio.h>

2: int main(int c) {

3: int counter = 0;

4: for (int i=0; i<counter; i++) {

5: if (checkPrime(i)) {

6: counter = counter + 1;

7: }

8: }

9: printf ("%d", counter);

10: return 0;

11: }

CS3213 Foundations of Software Engineering (AY21/22 Sem2) – Assignment 0 Page 6 of 18

Location Location Description True
Branch

False
Branch

Variable Assignments

1 at the beginning of the
function main

2 NULL

counter = 0

i = 0

2 the condition of the for

loop at line 4
4 5

$cond = i < counter

3 update of the for loop at
line 4

2 NULL

i = i + 0

4 inside the body of the
for loop beginning at
line 4

3 NULL

counter = ite(

FuncCall(

checkPrime , i),

counter+1,

counter)

5 after the for loop start-
ing at line 4

NULL NULL

$out = StrAppend(

$out , StrFormat

("%d",counter))

$ret = 0

Single Static Assignment (SSA): The final step of the parser is to ensure that in each location (i.e.,
basic block in the CFG), every variable is in the SSA form. This is crucial for the working functional-
ity of the other modules using this parser’s output. SSA form can be achieved by identifying the last
appearance of a variable in a particular location and replacing all non-last appearances of that variable
by a new (fresh) variable (e.g., a&1). Now, all the variables are in SSA form, but the newly created
fresh variables are redundant. Some post-processing of the SSA form is done such that the expressions
assigned to the fresh variables are propagated, effectively removing all the new variables created. During
this post-processing stage, the algorithm will keep track of variables that have been disruptively modified
and mark them as primed (e.g., c’). The following table demonstrates this approach:

Program Pre-Process SSA Form Post-Processing

int main(int c) {

int a = 5;

int b = a + c;

c = c + 1;

a = c;

}

a = 5

b = a + c

c = c + 1

a = c

a&1 = 5

b = a&1 + c

c = c + 1

a = c

a = c’

b = 5 + c

c = c + 1

1.2 Python Parser

(see description for project 1.1)

CS3213 Foundations of Software Engineering (AY21/22 Sem2) – Assignment 0 Page 7 of 18

2 Aligning / Matching of Programs

2.1 CFG-Based Alignment

Overview: This project represents the pre-processing step before any error localization or repair can
be applied on the submitted program. After the programs have been parsed to the intermediate program
models, this project would align the two programs. Therefore, it records a mapping between matching
basic blocks in both programs. Furthermore, it is necessary to create a mapping between the variables.
The variable mapping can be explored along various heuristics, e.g.,

• the similarities of variable names, or

• the relation between variable appearances on the left hand side (LHS) and right hand side (RHS)
in each basic block.

You can also develop other (more advanced) heuristics. The goal is to identify a bijective mapping
between the variable sets in both programs. The information about the structural and variable alignment
of the two programs, will be the input for the following repairing stages.

Complexity: [Coding: Medium, Theory: Medium, Research: Low, HCI: -]

Prerequisite and References: Since the alignment is based on the basic blocks in the CFG, the
students need to understand how a CFG works. It further would be helpful to study some background
on how to detect similar variables in two program, e.g., with the provided references below:

• https://www.sciencedirect.com/topics/computer-science/control-flow-graph

• A Comparison of String Distance Metrics for Name-Matching Tasks,
https://www.cs.cmu.edu/~wcohen/postscript/ijcai-ws-2003.pdf

• DECKARD: Scalable and Accurate Tree-based Detection of Code Clones,
https://www.cs.ucdavis.edu/~su/publications/icse07.pdf

(Note: the referenced papers are related but not the core of this project)

Assumptions and Dependencies:

• Inputs: This project requires as input two intermediate program models, representing the reference
solution and the submitted program.

• Outputs: This project should produce a mapping between two programs in terms of the basic
blocks in their CFGs and the included variables.

• Dependencies: This project does not require further dependencies on other modules of the system.

Algorithms: To get the students started with the problem domain, we provide a simple but incom-
plete algorithm for the structural alignment. Line 10 in the following algorithm contains a function
match function,for which no implementation is provided. It will include the details about the matching
algorithm that the students will need to figure out themselves. After the students have implemented the
structural mapping, they subsequently can work on the variable mapping, which is more challenging.

https://www.sciencedirect.com/topics/computer-science/control-flow-graph
https://www.cs.cmu.edu/~wcohen/postscript/ijcai-ws-2003.pdf
https://www.cs.ucdavis.edu/~su/publications/icse07.pdf

CS3213 Foundations of Software Engineering (AY21/22 Sem2) – Assignment 0 Page 8 of 18

Input: Let P and Q be the given two program objects

Output: Map <String ,<int , int >> that maps the basic block locations of P

with basic -block locations of Q, for each function

1: def match_program(P, Q):

2: mappings = {}

3: if len(P.fncs) != len(Q.fncs):

4: return false

5: for fncName_P , fncP in P.fncs.items():

6: if not fncName_P in Q.fncs.items():

7: return false

8: fncQ = Q.fncs[fncName_P]

9: mappings[fncName_P] = {}

10: match_function(fncP , fncQ , mappings)

CS3213 Foundations of Software Engineering (AY21/22 Sem2) – Assignment 0 Page 9 of 18

3 Error Localization / Program Interpretation

3.1 C Interpreter

Overview: As a prerequisite of error localization and program repair, an interpreter is used to con-
cretely execute a program to get its execution trace with specific input. At this stage, the project assumes
that the program is presented in some CFG-based representation. In this project, the students are asked
to implement an interpreter for the CFG-based representation. Given a program P in CFG-based rep-
resentation and an input i for P, the interpreter should generate the execution trace which records all
variables’ values during interpretation. In general, the interpreter mainly requires the following two
steps:

• Implement highly reusable and flexible code structure that traverse the CFG-representation of
program P correctly.

• Implement functions to execute all components in P ’s CFG representation and record all variables’
values in Memory with input i step by step during the traversing.

Furthermore, the students are asked to use their interpreter to implement a simple variant of a trace-
based error localization. It should use the resulting execution traces from the interpreter to detect
mismatches between the reference and submitted program with regard to the values along the execution
traces.

Complexity: [Coding: High, Theory: Medium, Research: -, HCI: -]

Prerequisite and References: Students need to understand what the concept of an AST (Abstract
Syntax Tree) and the general concept of program interpretation. The following references can help to
prepare for this project:

• https://en.wikipedia.org/wiki/Control-flow_graph

• https://en.wikipedia.org/wiki/Abstract_syntax_tree

• https://en.wikipedia.org/wiki/Interpreter_(computing)

• https://betterprogramming.pub/compiler-vs-interpreter-d0a12ca1c1b6

Assumptions and Dependencies:

• Inputs: This project requires as input an intermediate program model and the input, for which the
program should be executed/interpreted.

• Outputs: The interpreter shall produce a Trace object that includes the sequence of executed basic
blocks and the corresponding memory values.

• Dependencies: This project does not require further dependencies on other modules of the system.

Example: To further illustrate the problem and its solution, please find below a simple example.
Imagine the source code of program P is defined as follows:

def assign_to_one(a):

b = 1 + a

and P ′s CFG-representation looks like follows:

fun assign_to_one () : *

--

initloc : 1

Loc 1 (around the beginning of function ‘assign_to_one ’)

--

b := Add(1, a)

--

True -> null False -> null

https://en.wikipedia.org/wiki/Control-flow_graph
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/Interpreter_(computing)
https://betterprogramming.pub/compiler-vs-interpreter-d0a12ca1c1b6

CS3213 Foundations of Software Engineering (AY21/22 Sem2) – Assignment 0 Page 10 of 18

To execute the program P , we would expect an execution trace output like:

Trace [(fnc=assign_to_one , loc=1, mem={a=10, b=<undef >, $out ’=,
b’=11, a’=10, $out=, $ret ’=<undef >, $ret=<undef}>)]

In the printed execution trace.

• fnc=assign to one represents the execution trace is for function assign to one.

• loc=1 represents the execution trace is for code in location 1 of function assign to one.

• mem={a=10, b=<undef>, $out’=, b’=11, a’=10, $out=, $ret’=<undef>, $ret=<undef>} rep-
resents variables’ concrete values in the location 1 of function assign to one. The variables with-
out/with ’ notation store the values before/after the interpreter executes the statement in location
1 of function assign to one.

3.2 Python Interpreter

(see description for project 3.1)

CS3213 Foundations of Software Engineering (AY21/22 Sem2) – Assignment 0 Page 11 of 18

3.3 Error Localizer

Overview: The error localization is the basis for a well-working repair strategy as it identifies one
of its main ingredients, the potential fix locations. This project will give students the chance for an
in-depth study of existing error localization techniques and to apply these approaches in the context of
our intelligent tutoring system. This project requires to:

1. Perform a literature study on error/fault localization, and choose (at least) two different techniques.

2. Implement the chosen techniques within the context of our system.

3. Evaluate the techniques and determine strengths and weaknesses of the chosen techniques.

For example, you can choose some statistical fault localization and some analysis-based fault localization
technique.

Complexity: [Coding: Medium, Theory: High, Research: Low, HCI: -]

Prerequisite and References: Since the alignment is based on the basic blocks in the CFG, the
students need to understand the concept of a CFG. Furthermore, this project will require the students
to conduct their own literature study. The following references can help to prepare for this project:

• https://www.sciencedirect.com/topics/computer-science/control-flow-graph

• A Survey on Software Fault Localization,
https://doi.org/10.1109/TSE.2016.2521368

• Evaluating and improving fault localization,
https://doi.org/10.1109/ICSE.2017.62

• On the Accuracy of Spectrum-based Fault Localization,
https://doi.org/10.1109/TAIC.PART.2007.13

• Fault localization using execution slices and dataflow tests,
https://doi.org/10.1109/ISSRE.1995.497652

• Localizing Vulnerabilities Statistically From One Exploit,
https://doi.org/10.1145/3433210.3437528

• Beyond Tests: Program Vulnerability Repair via Crash Constraint Extraction,
https://doi.org/10.1145/3418461 (i.e., constraint/dependency-based fault localization)

Assumptions and Dependencies:

• Inputs: This project requires as input two intermediate program models, representing the reference
solution and the submitted program. Furthermore, it takes a set of inputs that can be used for the
error localization.

• Outputs: This project should produce at least two different error localizer implementations, which
both produce a list of error locations (i.e., list of matching pairs of basic blocks from two programs).

• Dependencies: This project has access to the interpreter to execute inputs on the program models.

https://www.sciencedirect.com/topics/computer-science/control-flow-graph
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1109/ICSE.2017.62
https://doi.org/10.1109/TAIC.PART.2007.13
https://doi.org/10.1109/ISSRE.1995.497652
https://doi.org/10.1145/3433210.3437528
https://doi.org/10.1145/3418461

CS3213 Foundations of Software Engineering (AY21/22 Sem2) – Assignment 0 Page 12 of 18

4 Transforming / Repairing Programs

4.1 Refactoring-based Repair

Overview: As repair we denote the fixing of the submitted program by reusing the existing reference
implementation. At this stage, the project assumes that the two programs are presented in some CFG-
based representation. However, the general assumption (e.g., as also used in project 4.2) that reference
program and submitted program can be fully aligned, does not always hold because the CFG represen-
tation of various submitted programs may differ a lot from the reference solution. Therefore, in this
project, the students are asked to implement a repair approach based on refactoring rules which increase
the possibility of aligning the two programs and fix the submitted program by expression mutation. In
general, this specific approach requires four steps:

1. Design and implement a set of refactoring rules that change the syntactic structure but preserve
the semantic meaning of the reference program.

2. Design and implement a set of expression mutation operators for the program CFG-representation.

3. Apply the refactoring rules on reference programs to generate a set of refactored programs and align
the refactored programs and the submitted program using alignment techniques in project 2.1.

4. Apply the expression mutation operators on the submitted program to find the best (minimal)
repair.

Complexity: [Coding: Medium, Theory: Medium, Research: Medium, HCI: -]

Prerequisite and References: Students need to understand what is program refactoring and program
mutation. The following references can help to prepare for this project:

• Re-factoring based Program Repair applied to Programming Assignments,
https://www.comp.nus.edu.sg/~abhik/pdf/ASE19.pdf

• TBar: Revisiting Template-Based Automated Program Repair,
https://arxiv.org/pdf/1903.08409.pdf

• https://en.wikipedia.org/wiki/Mutation_testing

• https://pitest.org/quickstart/mutators/

Assumptions and Dependencies:

• Inputs: a set of error locations

• Outputs: a set of repair candidates that fix the provided error locations

• Dependencies: This project will have access to an interpreter that can be used to exercise traces
through the programs and to observe variable values. Furthermore, it will have access to an
implementation of the program alignment (i.e., structural and variable alignment), which can be
used to implement the overall repair workflow.

Example: To further illustrate the problem and its solution, please find below a simple example.
Imagine the correct reference program is defined as follows:

def search(x, seq):

for i in range(len(seq)):

if x <= seq[i]:

return i

return len(seq)

and the submitted (incorrect) program looks like follows:

https://www.comp.nus.edu.sg/~abhik/pdf/ASE19.pdf
https://arxiv.org/pdf/1903.08409.pdf
https://en.wikipedia.org/wiki/Mutation_testing
https://pitest.org/quickstart/mutators/

CS3213 Foundations of Software Engineering (AY21/22 Sem2) – Assignment 0 Page 13 of 18

def search(e, lst):

for j in range(len(lst)):

if e < lst[j]:

return j

else:

return len(lst)

Because the reference program and the incorrect program have different control flow structures in their
if-statement, their CFG-based representation fail to align. To fix the submitted program, we would first
expect a refactored reference program like below to increase the alignment possibility:

def search(x, seq):

for i in range(len(seq)):

if x <= seq[i]:

return i

else:

pass

return len(seq)

We then expect the mutation operator to borrow expressions from refactored program to fix the submitted
program, generating a final repair output like:

• Change e < lst[j] to e <= lst[j].

• Change return len(lst) to pass.

• Add return len(lst) at end of the program.

CS3213 Foundations of Software Engineering (AY21/22 Sem2) – Assignment 0 Page 14 of 18

4.2 Optimization-based Repair

Overview: As repair we denote the fixing of the submitted program by reusing the existing reference
implementation. At this stage, the project assumes that the two programs are present in some CFG-
based representation, and that the programs are aligned, i.e., we know which basic block in the reference
implementation corresponds to which basic block in the submitted program. Furthermore, we know
the mapping(s) between the variables in the basic blocks. Note that there could be multiple variable
mappings. In this project, the students are asked to implement a repair approach based an optimizing
strategy that selects a repair with minimal cost. In general, this approach requires two steps:

1. Generate a set of local repairs for each implementation variable (i.e., its assigned expression).

2. Select a consistent subset of local repairs with the smallest cost.

A local repair refers to a replacement of an expression in the submitted program with an expression
taken form the reference program. Therefore, the goal of overall repair strategy is apply a subset of local
repairs so that the submitted program becomes semantically equivalent with the reference program.

A consistent repair combination refers to the problem that one cannot combine any local repair
possibility, but has to take into account the valid and available variable mappings.

It will be necessary to assign a cost value for each local repair. A straightforward approach would
be to use the Levenshtein Distance1 to calculate the distance between expressions. More advanced cost
metrics can be developed.

The exact optimization strategy can be decided by the students. However, we propose the usage of
0-1 Integer Linear Programming (ILP). Therefore, a concrete sequence of steps could be:

1. Construct a repair search space which enumerates all possible repairs for each error location by
matching the submission and reference solution.

2. Develop an algorithm to encode a possible repair into an 0-1 ILP constraint.

3. Apply an ILP solver to find best repair from the ILP constraint.

Complexity: [Coding: Medium-High, Theory: High, Research: Low, HCI: -]

Prerequisite and References: If the students want to follow the ILP-based repair strategy, they need
to understand what is ILP program solving and how to apply an ILP solver. The following references
can help to prepare for this project:

• https://en.wikipedia.org/wiki/Integer_programming

• Integer Programming,
https://web.mit.edu/15.053/www/AMP-Chapter-09.pdf

• https://developers.google.com/optimization/lp/glop

• https://realpython.com/linear-programming-python/#why-is-linear-programming-important

Assumptions and Dependencies:

• Inputs: a set of error locations, the syntactical alignment of the reference program and the sub-
mitted program, variable mapping between the two programs.

• Outputs: a set of repair candidates that fix the provided error locations

• Dependencies: this project will have access to an interpreter that can be used to exercise traces
through the programs and to observe variable values. Furthermore it will have access to an ILP
solver engine.

1https://en.wikipedia.org/wiki/Levenshtein_distance

https://en.wikipedia.org/wiki/Integer_programming
https://web.mit.edu/15.053/www/AMP-Chapter-09.pdf
https://developers.google.com/optimization/lp/glop
https://realpython.com/linear-programming-python/#why-is-linear-programming-important
https://en.wikipedia.org/wiki/Levenshtein_distance

CS3213 Foundations of Software Engineering (AY21/22 Sem2) – Assignment 0 Page 15 of 18

Example: To further illustrate the problem and a potential solution strategy, please find below a
simple example. Imagine the correct reference program is defined as follows:

def assign_to_one ():

1: a = 0

2: b = 1 + a

3: return b

..., and the submitted (incorrect) program looks like follows:

def assign_to_one ():

1: x = 0

2: y = 5 + x

3: return y

To fix the submitted program, we would expect a final repair output like:

Change ”y = 5 + x” to ”y = 1 + x”.

Let’s assume that as input to our repair strategy, we also receive the set of error location pairs, e.g.,
E ← {(1, 1)}. In this case relatively simple, just location 1. All program lines would be represented in
the same basic block in control-flow graph (CFG), hence the single pair of error locations.

Furthermore, we receive the possible variable mappings:
M← {m1 : (a 7→ x, b 7→ y), m2 : (a 7→ y, b 7→ x)}.

For variable mapping m1 : (a 7→ x, b 7→ y), there is local repair:

• r1 ← change expression of y to 1 + x (with repair cost = 1)

For variable mapping m2 : (a 7→ y, b 7→ x), there are the local repairs:

• r2 ← change expression of x to 1 + y (with repair cost = 3)

• r3 ← change expression of y to 0 (with repair cost = 3)

• r4 ← change return expression to x (with repair cost = 1)

Each of the repair is assigned with a repair cost, in this case the Levenshtein Distance between the
changed code and the original code. Based on the repair search space {r1, r2, r3, r4} we can now encode
the 0-1 ILP constraint. For example, as follows:

// enforce bijective variable mapping

1 ∗m1 + 1 ∗m2 = 1
// repair r is chosen iff the bijective mapping is selected

−1 ∗ r1 + 1 ∗m1 = 0
−1 ∗ r2 + 1 ∗m2 = 0
−1 ∗ r3 + 1 ∗m2 = 0
−1 ∗ r4 + 1 ∗m2 = 0

This ILP constraint can be passed to an ILP solver with the objective to minimise (1 ∗ r1 + 3 ∗ r2 + 3 ∗
r3 + 1 ∗ r4). This would least to the resulting assignment: r1 = 1, r2 = 0, r3 = 0, r4 = 0,m1 = 1,m2 = 0,
and hence select the repair r1 as repair with the lowest cost. Therefore, the final output would match
the expected output from the beginning:

Change ”y = 5 + x” to ”y = 1 + x”.

CS3213 Foundations of Software Engineering (AY21/22 Sem2) – Assignment 0 Page 16 of 18

4.3 Synthesis-based Repair

Overview: As a challenging alternative to the other repair projects, synthesis-based repair follows a
different approach, and requires two general steps:

1. Specification Inference

2. Program Expression Synthesis

The Specification Inference constructs a repair constraint, e.g., by collecting expected values for variables
at the identified error location(s). Such a repair constraint can then be used to synthesize expression(s) at
the identified error location(s) to repair the submitted program. While the repair constraint defines the
correctness of the semantics of the expression, the synthesis part also needs the information about how
the expression can look like. Therefore, it would be provided with the available syntactical components
(i.e., component-based synthesis) or a context-free grammar (i.e., grammar-based synthesis). The task
in this project is to develop both, the specification inference and the expression synthesis.

Complexity: [Coding: Medium, Theory: High, Research: Medium, HCI: -]

Prerequisite and References: This project is challenging because it combines several technical as-
pects and provides several research possibilities, as both, specification inference and program synthesis,
are active research areas. The following references can help to prepare for this project:

• Syntax-guided synthesis,
https://doi.org/10.1109/FMCAD.2013.6679385

• Oracle-guided component-based program synthesis,
https://doi.org/10.1145/1806799.1806833

• Angelix: scalable multiline program patch synthesis via symbolic analysis,
https://doi.org/10.1145/2884781.2884807

• Combinatorial Sketching for Finite Programs Armando,
https://doi.org/10.1145/1168857.1168907

• Semantics-Guided Synthesis,
https://doi.org/10.1145/3410258

Assumptions and Dependencies:

• Inputs: This project requires as input two intermediate program models, representing the reference
solution and the submitted program. Furthermore, it takes a set of inputs and the corresponding
error locations.

• Outputs: A set of repair candidates that fix the provided error locations.

• Dependencies: This project has access to the interpreter to execute inputs on the program models,
as well to an SMT solver engine. More dependencies can be added if necessary.

https://doi.org/10.1109/FMCAD.2013.6679385
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/2884781.2884807
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1145/3410258

CS3213 Foundations of Software Engineering (AY21/22 Sem2) – Assignment 0 Page 17 of 18

5 Feedback Generation

5.1 Automated Feedback

Overview: Though the techniques under Topic 4 (Transforming / Repairing Programs) are able to
generate program patches for an incorrect student submission. It is not considered as a good teaching
practice to directly present the fixes as feedback to a student. The student might simply follow the
fixes to edit their incorrect submission and submit again, losing the motivation to think thoroughly why
his/her submission was wrong. In this project, the students are asked to propose innovative feedback
mechanisms, which guide the students to understand his/her mistakes comprehensively. Given a repair
candidate, this project should automatically generate meaningful, customized feedback for each submis-
sion at different levels, including but not limited to (1) analyze the repair candidate and evaluate the
difficulty level to fix the incorrect submission; (2) explain the root cause of the incorrect submission
and guide the student to relevant material. All reasonable answers will be accepted. In general, the
automated feedback require three steps:

• Analyze what information are provided in the repair candidate.

• Propose reasonable feedback mechanisms by using the information in the repair candidates.

• Implement an automated feedback generation system that applies the proposed feedback mecha-
nism.

Complexity: [Coding: Low, Theory: Medium, Research: Medium, HCI: High]

Prerequisite and References: Students need to search the literature about what kind of feedback
can help students improve their learning efficiency, and combine with the repair candidate that we provide
to design unique feedback mechanism to students. The following references can help to prepare for this
project:

• Automated Feedback Generation for Introductory Programming Assignments,
https://arxiv.org/pdf/1204.1751.pdf

• Introductory programming: a systematic literature review,
https://dl.acm.org/doi/abs/10.1145/3293881.3295779

• A feasibility study of using automated program repair for introductory programming assignments,
https://dl.acm.org/doi/abs/10.1145/3106237.3106262

Assumptions and Dependencies:

• Inputs: This project requires as input the generated repair candidates.

• Outputs: Textual output that represents the generated feedback.

• Dependencies: This project has no access direct access to other modules of the system, however,
they can be granted if necessary.

https://arxiv.org/pdf/1204.1751.pdf
https://dl.acm.org/doi/abs/10.1145/3293881.3295779
https://dl.acm.org/doi/abs/10.1145/3106237.3106262

CS3213 Foundations of Software Engineering (AY21/22 Sem2) – Assignment 0 Page 18 of 18

5.2 Automated Grading

Overview: In recent years, due to the fact that programming skill can help to improve employment
outcomes, the demand of computer science education is higher than ever. In university, the phenomenon
has led to explosive growth of student enrolment in introductory programming courses. To guarantee
the teaching quality, course instructor and human tutors need more effort in assessing students’ learning
outcome at large scale, one of typical ways is through grading their programming assignments. In
this project, students are asked to propose precise automated grading mechanisms for introductory
programming assignments and implement such an auto-grading system. Given an incorrect submitted
program, the auto-grading system should automatically generate a final grade, the grading metric can
include but not limited to (1) analyze the behavior difference between reference program and incorrect
program with same input; (2) evaluate the effort required to generate a repair using techniques in
Project 4.2 and also evaluate the generated repair’s quality. In general, the automated grading require
three steps:

• Analyze what information in the intelligent tutoring system (can take from all other projects) can
help to assess an incorrect submitted program.

• Propose reasonable automated grading mechanisms by using the information you need.

• Implement an automated grading system with your mechanisms and evaluate it in the dataset.

Complexity: [Coding: Low, Theory: High, Research: High, HCI: Low]

Prerequisite and References: Students need to search the literature about how existing automated
grading system works and propose their own strategies based on previous work. The following references
can help to prepare for this project:

• Automated Grading of Programming Assignments,
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.6483&rep=rep1&type=pdf

• Automatic Grading of Programming Assignments: An Approach Based on Formal Semantics,
https://www.cs.tufts.edu/~nr/cs257/archive/autograde-icse-2019.pdf

• Automatic Grading of Computer Programs: A Machine Learning Approach,
https://ieeexplore.ieee.org/document/6784592

• Using Latent Semantic Analysis for automated grading programming assignments,
https://ieeexplore.ieee.org/abstract/document/5995769

• Semantic similarity-based grading of student programs,
https://www.sciencedirect.com/science/article/abs/pii/S0950584906000371

Assumptions and Dependencies:

• Inputs: Due to its research nature, this exact interface for this project is not defined. However,
the students can expect to get as input all available artifacts of the repair system, i.e., the aligned
programs in their intermediate model, the identified error locations, and the generated repair
candidates.

• Outputs: Textual output that represents the generated grading.

• Dependencies: This project has no access direct access to other modules of the system, however,
they can be granted if necessary.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.6483&rep=rep1&type=pdf
https://www.cs.tufts.edu/~nr/cs257/archive/autograde-icse-2019.pdf
https://ieeexplore.ieee.org/document/6784592
https://ieeexplore.ieee.org/abstract/document/5995769
https://www.sciencedirect.com/science/article/abs/pii/S0950584906000371

	Parsing
	C Parser
	Python Parser

	Aligning / Matching of Programs
	CFG-Based Alignment

	Error Localization / Program Interpretation
	C Interpreter
	Python Interpreter
	Error Localizer

	Transforming / Repairing Programs
	Refactoring-based Repair
	Optimization-based Repair
	Synthesis-based Repair

	Feedback Generation
	Automated Feedback
	Automated Grading

