
CS3213
Architecture Overview

1

❏ Sample Workflow
❏ Components in the its-core
❏ Architectural Styles

yannic@comp.nus.edu.sg CS3213 – Foundations of Software Engineering

Sample Workflow

The next slides show the intended workflow through the Intelligent
Tutoring System (ITS). Note that there are points of variation (static and
dynamic) that depend, e.g., on the programming language of the
programming assignments and the intended repair strategies. Many of
the current components can be implemented in many different ways.

2yannic@comp.nus.edu.sg CS3213 – Foundations of Software Engineering

Workflow (Overview)

Syntactic
Alignment

Parser

Concretization

Error Localizer

Repair

Feedback Auto-Grading

🧑🏫
Teacher/

Tutor

🧑🎓
Student
(Novice

Programmer)

Interpreter

Reference Program

Submitted Program

<<uses>>

<<uses>>

Reference and Submitted
Program in internal

Program representation

Aligned Programs

Error Locations

Repair Candidates
<<uses>>

Tutoring Feedback

Generated Grading

Intelligent Tutoring System

1
2

3
4

5

6

7

8

3yannic@comp.nus.edu.sg CS3213 – Foundations of Software Engineering

The Intelligent Tutoring System (ITS) uses the notion of a pipes-and-filter
style to process the submitted program, and finally, to produce feedback
for the students and a grading report for the tutor.

All components provide corresponding interfaces to an extent that most
components can be implemented independently from each other.

This architecture also allows us to deploy certain components of the
system as separate services. In this regard, the design borrows concepts
from the service-oriented style. For example, we will later give you
access to a Parser service that allows you to easily generate the internal
CFG-based Program representation to create test cases for your
projects.

Workflow (Overview)

Syntactic
Alignment

Parser

Concretization

Error Localizer

Repair

Feedback Auto-Grading

🧑🏫
Teacher/

Tutor

🧑🎓
Student
(Novice

Programmer)

Interpreter

Reference Program

Submitted Program

<<uses>>

<<uses>>

Reference and Submitted
Program in internal

Program representation

Aligned Programs

Error Locations

Repair Candidates
<<uses>>

Tutoring Feedback

Generated Grading

Intelligent Tutoring System

1
2

3
4

5

6

7

8

4yannic@comp.nus.edu.sg CS3213 – Foundations of Software Engineering

Workflow (Step)

Syntactic
Alignment

Parser

Concretization

Error Localizer

Repair

Feedback Auto-Grading

🧑🏫
Teacher/

Tutor

🧑🎓
Student
(Novice

Programmer)

Interpreter

Reference Program

Submitted Program

<<uses>>

<<uses>>

Reference and Submitted
Program in internal

Program representation

Aligned Programs

Error Locations

Repair Candidates
<<uses>>

Tutoring Feedback

Generated Grading

Intelligent Tutoring System

1
2

3
4

5

6

7

8

5yannic@comp.nus.edu.sg CS3213 – Foundations of Software Engineering

The reference program and the submitted (incorrect)
program are given to the Parser component. For each
program, it generates the corresponding internal
Program representation. This representation is based
on the Control-Flow Graph (CFG). Finally, the results
are passed to the Syntactic Alignment component.

The objective of the Parser components is to enable
the other internal parts of the Intelligent Tutoring
System to work independently from a specific
programming language.

1

Syntactic
Alignment

Parser

Concretization

Error Localizer

Repair

Feedback Auto-Grading

🧑🏫
Teacher/

Tutor

🧑🎓
Student
(Novice

Programmer)

Interpreter

Reference Program

Submitted Program

<<uses>>

<<uses>>

Reference and Submitted
Program in internal

Program representation

Aligned Programs

Error Locations

Repair Candidates
<<uses>>

Tutoring Feedback

Generated Grading

Intelligent Tutoring System

1
2

3
4

5

6

7

8

6yannic@comp.nus.edu.sg CS3213 – Foundations of Software Engineering

The Syntactic Alignment component takes the two
Program objects and identifies the matching basic
blocks. Therefore, it aligns the two programs with regard
to their CFG representation. Moreover, it generates a
mapping of the existing variables for each function inside
the programs.

The results can be later used to detect (error) locations,
where the reference program and the submitted program
behave differently. Additionally, this information helps to
attempt the repair/fix of the submitted program by reusing
information from the reference program.

Workflow (Step)2

Syntactic
Alignment

Parser

Concretization

Error Localizer

Repair

Feedback Auto-Grading

🧑🏫
Teacher/

Tutor

🧑🎓
Student
(Novice

Programmer)

Interpreter

Reference Program

Submitted Program

<<uses>>

<<uses>>

Reference and Submitted
Program in internal

Program representation

Aligned Programs

Error Locations

Repair Candidates
<<uses>>

Tutoring Feedback

Generated Grading

Intelligent Tutoring System

1
2

3
4

5

6

7

8

7yannic@comp.nus.edu.sg CS3213 – Foundations of Software Engineering

The Error Localization component identifies locations that
show erroneous behavior in the submitted program. These
locations are also called error locations. This information
enables the upcoming components in the workflow to
formulate a repair/fix.
The Error Localization component has access to the
Interpreter component to execute test cases while observing
the values of variables at specific locations. In particular, it
can use the Interpreter to detect semantic differences
between the reference program and the submitted program.

The Interpreter component allows the execution
of a program in its CFG-based representation
without any compilation or execution on the
actual system. It generates an execution trace
that includes the sequence of executed basic
blocks and a memory object, which holds the
variable values at specific locations.

Workflow (Step +)3 4

Syntactic
Alignment

Parser

Concretization

Error Localizer

Repair

Feedback Auto-Grading

🧑🏫
Teacher/

Tutor

🧑🎓
Student
(Novice

Programmer)

Interpreter

Reference Program

Submitted Program

<<uses>>

<<uses>>

Reference and Submitted
Program in internal

Program representation

Aligned Programs

Error Locations

Repair Candidates
<<uses>>

Tutoring Feedback

Generated Grading

Intelligent Tutoring System

1
2

3
4

5

6

7

8

8yannic@comp.nus.edu.sg CS3213 – Foundations of Software Engineering

The Repair component attempts to fix the submitted program.
For example, it can use the mapping to the reference program
(see step 2) and the identified error locations (see step 3) to
generate so-called local repairs that fix the expression in the
right-hand side of assignments in the submitted program (see
the project about optimization-based repair). The repair
process results in a list of plausible Repair Candidates.

If necessary, it also can use the Interpreter component to
extract more information from the (correct) reference program.

Workflow (Step)5

Syntactic
Alignment

Parser

Concretization

Error Localizer

Repair

Feedback Auto-Grading

🧑🏫
Teacher/

Tutor

🧑🎓
Student
(Novice

Programmer)

Interpreter

Reference Program

Submitted Program

<<uses>>

<<uses>>

Reference and Submitted
Program in internal

Program representation

Aligned Programs

Error Locations

Repair Candidates
<<uses>>

Tutoring Feedback

Generated Grading

Intelligent Tutoring System

1
2

3
4

5

6

7

8

9yannic@comp.nus.edu.sg CS3213 – Foundations of Software Engineering

Finally, with all the collected information, the
Feedback component can generate the appropriate
guidance for the students to correct their submission.

For example, it can generate a natural language
explanation of the generated Repair Candidates,
and/or use the Concretization module to generate the
concrete source code of the repaired submission.

Workflow (Step +)6 7

The Concretization component takes as
input a program in our internal CFG-based
representation. It then generates the
concrete source code.

The Concretization is the counterpart to
the Parsing component and can be used to
generate the concrete source code for
collected repairs.

Syntactic
Alignment

Parser

Concretization

Error Localizer

Repair

Feedback Auto-Grading

🧑🏫
Teacher/

Tutor

🧑🎓
Student
(Novice

Programmer)

Interpreter

Reference Program

Submitted Program

<<uses>>

<<uses>>

Reference and Submitted
Program in internal

Program representation

Aligned Programs

Error Locations

Repair Candidates
<<uses>>

Tutoring Feedback

Generated Grading

Intelligent Tutoring System

1
2

3
4

5

6

7

8

10yannic@comp.nus.edu.sg CS3213 – Foundations of Software Engineering

Based on the collected information and
generated artifacts, the Automated Grading
component generates a report for the tutor.
It assesses the student’s submission by, for
example, using the necessary cost of
repairing the solution.

Workflow (Step)8

Components in the context of the
its-core baseline

The next slides show more details about the
components and their interfaces. For your
projects, you will get access to the its-core,
which includes all interfaces, common data
structures, and some utility functions.

11yannic@comp.nus.edu.sg CS3213 – Foundations of Software Engineering

Components (1/4)

��FRPSRQHQW!!�
3DUVLQJ

©LQWHUIDFHª�
3DUVHU

&�3DUVHU 3\WKRQ�3DUVHU

��FRPSRQHQW!!�
,QWHUSUHWDWLRQ

©LQWHUIDFHª�
,QWHUSUHWHU

&�,QWHUSUHWHU 3\WKRQ�
,QWHUSUHWHU

��FRPSRQHQW!!�
&RQFUHWL]DWLRQ

©LQWHUIDFHª�
&RQFUHWL]DWLRQ

&�
&RQFUHWL]HU

3\WKRQ�
&RQFUHWL]HU

��FRPSRQHQW!!�
$OLJQPHQW

©LQWHUIDFHª�
6WUXFWXUDO$OLJQPHQW

&IJ%DVHG6WUXFWXUDO$OLJQPHQW

©LQWHUIDFHª�
9DULDEOH$OLJQPHQW

9DULDEOH0DSSLQJ%\'HI8VH$QDO\VLV

��FRPSRQHQW!!�
(UURU�/RFDOL]DWLRQ

©LQWHUIDFHª�
(UURU/RFDOL]HU

7UDFH%DVHG(UURU/RFDOL]HU

�
��FRPSRQHQW!!�
3URJUDP�5HSDLU

©LQWHUIDFHª�
5HSDLU

0XWDWLRQ�%DVHG�5HSDLU 2SWLPL]DWLRQ�%DVHG�5HSDLU 6\QWKHVLV�%DVHG�5HSDLU

��FRPSRQHQW!!�
$XWRPDWHG�)HHGEDFN

©LQWHUIDFHª�
)HHGEDFN

&XVWRP6WXGHQW)HHGEDFN

��FRPSRQHQW!!�
$XWRPDWHG�*UDGLQJ

©LQWHUIDFHª�
*UDGLQJ

6XEPLVVLRQ*UDGLQJ

��FRPSRQHQW!!�
3DUVLQJ

©LQWHUIDFHª�
3DUVHU

&�3DUVHU 3\WKRQ�3DUVHU

��FRPSRQHQW!!�
,QWHUSUHWDWLRQ

©LQWHUIDFHª�
,QWHUSUHWHU

&�,QWHUSUHWHU 3\WKRQ�
,QWHUSUHWHU

��FRPSRQHQW!!�
&RQFUHWL]DWLRQ

©LQWHUIDFHª�
&RQFUHWL]DWLRQ

&�
&RQFUHWL]HU

3\WKRQ�
&RQFUHWL]HU

��FRPSRQHQW!!�
$OLJQPHQW

©LQWHUIDFHª�
6WUXFWXUDO$OLJQPHQW

&IJ%DVHG6WUXFWXUDO$OLJQPHQW

©LQWHUIDFHª�
9DULDEOH$OLJQPHQW

9DULDEOH0DSSLQJ%\'HI8VH$QDO\VLV

��FRPSRQHQW!!�
(UURU�/RFDOL]DWLRQ

©LQWHUIDFHª�
(UURU/RFDOL]HU

7UDFH%DVHG(UURU/RFDOL]HU

�
��FRPSRQHQW!!�
3URJUDP�5HSDLU

©LQWHUIDFHª�
5HSDLU

0XWDWLRQ�%DVHG�5HSDLU 2SWLPL]DWLRQ�%DVHG�5HSDLU 6\QWKHVLV�%DVHG�5HSDLU

��FRPSRQHQW!!�
$XWRPDWHG�)HHGEDFN

©LQWHUIDFHª�
)HHGEDFN

&XVWRP6WXGHQW)HHGEDFN

��FRPSRQHQW!!�
$XWRPDWHG�*UDGLQJ

©LQWHUIDFHª�
*UDGLQJ

6XEPLVVLRQ*UDGLQJ

12yannic@comp.nus.edu.sg CS3213 – Foundations of Software Engineering

��FRPSRQHQW!!�
3DUVLQJ

©LQWHUIDFHª�
3DUVHU

&�3DUVHU 3\WKRQ�3DUVHU

��FRPSRQHQW!!�
,QWHUSUHWDWLRQ

©LQWHUIDFHª�
,QWHUSUHWHU

&�,QWHUSUHWHU 3\WKRQ�
,QWHUSUHWHU

��FRPSRQHQW!!�
&RQFUHWL]DWLRQ

©LQWHUIDFHª�
&RQFUHWL]DWLRQ

&�
&RQFUHWL]HU

3\WKRQ�
&RQFUHWL]HU

��FRPSRQHQW!!�
$OLJQPHQW

©LQWHUIDFHª�
6WUXFWXUDO$OLJQPHQW

&IJ%DVHG6WUXFWXUDO$OLJQPHQW

©LQWHUIDFHª�
9DULDEOH$OLJQPHQW

9DULDEOH0DSSLQJ%\'HI8VH$QDO\VLV

��FRPSRQHQW!!�
(UURU�/RFDOL]DWLRQ

©LQWHUIDFHª�
(UURU/RFDOL]HU

7UDFH%DVHG(UURU/RFDOL]HU

�
��FRPSRQHQW!!�
3URJUDP�5HSDLU

©LQWHUIDFHª�
5HSDLU

0XWDWLRQ�%DVHG�5HSDLU 2SWLPL]DWLRQ�%DVHG�5HSDLU 6\QWKHVLV�%DVHG�5HSDLU

��FRPSRQHQW!!�
$XWRPDWHG�)HHGEDFN

©LQWHUIDFHª�
)HHGEDFN

&XVWRP6WXGHQW)HHGEDFN

��FRPSRQHQW!!�
$XWRPDWHG�*UDGLQJ

©LQWHUIDFHª�
*UDGLQJ

6XEPLVVLRQ*UDGLQJ

Components (2/4)

13yannic@comp.nus.edu.sg CS3213 – Foundations of Software Engineering

��FRPSRQHQW!!�
3DUVLQJ

©LQWHUIDFHª�
3DUVHU

&�3DUVHU 3\WKRQ�3DUVHU

��FRPSRQHQW!!�
,QWHUSUHWDWLRQ

©LQWHUIDFHª�
,QWHUSUHWHU

&�,QWHUSUHWHU 3\WKRQ�
,QWHUSUHWHU

��FRPSRQHQW!!�
&RQFUHWL]DWLRQ

©LQWHUIDFHª�
&RQFUHWL]DWLRQ

&�
&RQFUHWL]HU

3\WKRQ�
&RQFUHWL]HU

��FRPSRQHQW!!�
$OLJQPHQW

©LQWHUIDFHª�
6WUXFWXUDO$OLJQPHQW

&IJ%DVHG6WUXFWXUDO$OLJQPHQW

©LQWHUIDFHª�
9DULDEOH$OLJQPHQW

9DULDEOH0DSSLQJ%\'HI8VH$QDO\VLV

��FRPSRQHQW!!�
(UURU�/RFDOL]DWLRQ

©LQWHUIDFHª�
(UURU/RFDOL]HU

7UDFH%DVHG(UURU/RFDOL]HU

�
��FRPSRQHQW!!�
3URJUDP�5HSDLU

©LQWHUIDFHª�
5HSDLU

0XWDWLRQ�%DVHG�5HSDLU 2SWLPL]DWLRQ�%DVHG�5HSDLU 6\QWKHVLV�%DVHG�5HSDLU

��FRPSRQHQW!!�
$XWRPDWHG�)HHGEDFN

©LQWHUIDFHª�
)HHGEDFN

&XVWRP6WXGHQW)HHGEDFN

��FRPSRQHQW!!�
$XWRPDWHG�*UDGLQJ

©LQWHUIDFHª�
*UDGLQJ

6XEPLVVLRQ*UDGLQJ

Components (3/4)

14yannic@comp.nus.edu.sg CS3213 – Foundations of Software Engineering

��FRPSRQHQW!!�
3DUVLQJ

©LQWHUIDFHª�
3DUVHU

&�3DUVHU 3\WKRQ�3DUVHU

��FRPSRQHQW!!�
,QWHUSUHWDWLRQ

©LQWHUIDFHª�
,QWHUSUHWHU

&�,QWHUSUHWHU 3\WKRQ�
,QWHUSUHWHU

��FRPSRQHQW!!�
&RQFUHWL]DWLRQ

©LQWHUIDFHª�
&RQFUHWL]DWLRQ

&�
&RQFUHWL]HU

3\WKRQ�
&RQFUHWL]HU

��FRPSRQHQW!!�
$OLJQPHQW

©LQWHUIDFHª�
6WUXFWXUDO$OLJQPHQW

&IJ%DVHG6WUXFWXUDO$OLJQPHQW

©LQWHUIDFHª�
9DULDEOH$OLJQPHQW

9DULDEOH0DSSLQJ%\'HI8VH$QDO\VLV

��FRPSRQHQW!!�
(UURU�/RFDOL]DWLRQ

©LQWHUIDFHª�
(UURU/RFDOL]HU

7UDFH%DVHG(UURU/RFDOL]HU

�
��FRPSRQHQW!!�
3URJUDP�5HSDLU

©LQWHUIDFHª�
5HSDLU

0XWDWLRQ�%DVHG�5HSDLU 2SWLPL]DWLRQ�%DVHG�5HSDLU 6\QWKHVLV�%DVHG�5HSDLU

��FRPSRQHQW!!�
$XWRPDWHG�)HHGEDFN

©LQWHUIDFHª�
)HHGEDFN

&XVWRP6WXGHQW)HHGEDFN

��FRPSRQHQW!!�
$XWRPDWHG�*UDGLQJ

©LQWHUIDFHª�
*UDGLQJ

6XEPLVVLRQ*UDGLQJ

Components (3/4)

15yannic@comp.nus.edu.sg CS3213 – Foundations of Software Engineering

��FRPSRQHQW!!�
3DUVLQJ

©LQWHUIDFHª�
3DUVHU

&�3DUVHU 3\WKRQ�3DUVHU

��FRPSRQHQW!!�
,QWHUSUHWDWLRQ

©LQWHUIDFHª�
,QWHUSUHWHU

&�,QWHUSUHWHU 3\WKRQ�
,QWHUSUHWHU

��FRPSRQHQW!!�
&RQFUHWL]DWLRQ

©LQWHUIDFHª�
&RQFUHWL]DWLRQ

&�
&RQFUHWL]HU

3\WKRQ�
&RQFUHWL]HU

��FRPSRQHQW!!�
$OLJQPHQW

©LQWHUIDFHª�
6WUXFWXUDO$OLJQPHQW

&IJ%DVHG6WUXFWXUDO$OLJQPHQW

©LQWHUIDFHª�
9DULDEOH$OLJQPHQW

9DULDEOH0DSSLQJ%\'HI8VH$QDO\VLV

��FRPSRQHQW!!�
(UURU�/RFDOL]DWLRQ

©LQWHUIDFHª�
(UURU/RFDOL]HU

7UDFH%DVHG(UURU/RFDOL]HU

�
��FRPSRQHQW!!�
3URJUDP�5HSDLU

©LQWHUIDFHª�
5HSDLU

0XWDWLRQ�%DVHG�5HSDLU 2SWLPL]DWLRQ�%DVHG�5HSDLU 6\QWKHVLV�%DVHG�5HSDLU

��FRPSRQHQW!!�
$XWRPDWHG�)HHGEDFN

©LQWHUIDFHª�
)HHGEDFN

&XVWRP6WXGHQW)HHGEDFN

��FRPSRQHQW!!�
$XWRPDWHG�*UDGLQJ

©LQWHUIDFHª�
*UDGLQJ

6XEPLVVLRQ*UDGLQJ

Components (4/4)

16yannic@comp.nus.edu.sg CS3213 – Foundations of Software Engineering

��FRPSRQHQW!!�
3DUVLQJ

©LQWHUIDFHª�
3DUVHU

&�3DUVHU 3\WKRQ�3DUVHU

��FRPSRQHQW!!�
,QWHUSUHWDWLRQ

©LQWHUIDFHª�
,QWHUSUHWHU

&�,QWHUSUHWHU 3\WKRQ�
,QWHUSUHWHU

��FRPSRQHQW!!�
&RQFUHWL]DWLRQ

©LQWHUIDFHª�
&RQFUHWL]DWLRQ

&�
&RQFUHWL]HU

3\WKRQ�
&RQFUHWL]HU

��FRPSRQHQW!!�
$OLJQPHQW

©LQWHUIDFHª�
6WUXFWXUDO$OLJQPHQW

&IJ%DVHG6WUXFWXUDO$OLJQPHQW

©LQWHUIDFHª�
9DULDEOH$OLJQPHQW

9DULDEOH0DSSLQJ%\'HI8VH$QDO\VLV

��FRPSRQHQW!!�
(UURU�/RFDOL]DWLRQ

©LQWHUIDFHª�
(UURU/RFDOL]HU

7UDFH%DVHG(UURU/RFDOL]HU

�
��FRPSRQHQW!!�
3URJUDP�5HSDLU

©LQWHUIDFHª�
5HSDLU

0XWDWLRQ�%DVHG�5HSDLU 2SWLPL]DWLRQ�%DVHG�5HSDLU 6\QWKHVLV�%DVHG�5HSDLU

��FRPSRQHQW!!�
$XWRPDWHG�)HHGEDFN

©LQWHUIDFHª�
)HHGEDFN

&XVWRP6WXGHQW)HHGEDFN

��FRPSRQHQW!!�
$XWRPDWHG�*UDGLQJ

©LQWHUIDFHª�
*UDGLQJ

6XEPLVVLRQ*UDGLQJ

Note that for both, Feedback and Grading, the
interfaces are not 100% fixed. Depending on ”what”
information your Feedback and Grading strategy
requires, we will adapt the interfaces accordingly. We
will also discuss with you how feasible your plans are
and how they can be adjusted to fit the system.

Acknowledgment
Our slides are based on the resources for:

“Software Architecture: Foundations,
Theory, and Practice”
by Richard N. Taylor, Nenad Medvidovic,
and Eric M. Dashofy; 2008 John Wiley &
Sons, Inc.

https://www.softwarearchitecturebook.co
m/resources/

17yannic@comp.nus.edu.sg CS3213 – Foundations of Software Engineering

https://www.softwarearchitecturebook.com/resources/

q Hierarchical system organization
q “Multi-level client-server”
q Each layer exposes an interface (API) to be used by above layers

q Each layer acts as a
q Server: service provider to layers “above”
q Client: service consumer of layer(s) “below”

q Connectors are protocols of layer interaction
q Example: operating systems
q Virtual machine style results from fully opaque layers

Layered Style (1/3)

18yannic@comp.nus.edu.sg CS3213 – Foundations of Software Engineering

q Advantages
q Increasing abstraction levels
q Evolvability
q Changes in a layer affect at most the adjacent two layers

q Reuse
q Different implementations of layer are allowed as long as interface is

preserved
q Standardized layer interfaces for libraries and frameworks

Layered Style (2/3)

19yannic@comp.nus.edu.sg CS3213 – Foundations of Software Engineering

q Disadvantages
q Not universally applicable
q Performance

q Layers may have to be skipped
q Determining the correct abstraction level

Layered Style (3/3)

20yannic@comp.nus.edu.sg CS3213 – Foundations of Software Engineering

❔
How can the Layered Style be applied for
our Intelligent Tutoring System and its
components?

21yannic@comp.nus.edu.sg CS3213 – Foundations of Software Engineering

Note that the following examples for the Intelligent
Tutoring System might not represent the best way
of organizing the components and designing
their interactions. They are meant for illustrating

the dicussed architectural styles.

22yannic@comp.nus.edu.sg CS3213 – Foundations of Software Engineering

Layered Style (applied)

🧑🏫
Teacher/

Tutor

🧑🎓
Student
(Novice

Programmer)

Feedback

Auto-Grading

Syntactic
Alignment

Error Localizer

Repair

Parser

Concretization

Interpreter

Application Layer Analysis LayerUI Layer File Processing Layer

Tutor
Console

Student
Console

23yannic@comp.nus.edu.sg CS3213 – Foundations of Software Engineering

q Components are clients and servers
q Servers do not know number or

identities of clients
q Clients know server’s identity
q Connectors are RPC-based network

interaction protocols

Client-Server Style

24yannic@comp.nus.edu.sg CS3213 – Foundations of Software Engineering

❔
How can the Client-Server Style be applied
for our Intelligent Tutoring System and its
components?

25yannic@comp.nus.edu.sg CS3213 – Foundations of Software Engineering

Client-Server Style (applied)

🧑🏫
Teacher/

Tutor

🧑🎓
Student
(Novice

Programmer)

Feedback

Auto-Grading

Syntactic
Alignment

Error Localizer

Repair

Parser

Concretization

Interpreter

Main Controller
(Server)

Server holds the main logic for processing
the input and how to combine the available

components to produce the output.

Clients

Server Backend

26yannic@comp.nus.edu.sg CS3213 – Foundations of Software Engineering

q Components are filters
q Transform input data streams into output data streams
q Possibly incremental production of output

q Connectors are pipes
q Conduits for data streams

q Style invariants
q Filters are independent (no shared state)
q Filter has no knowledge of up- or down-stream filters

q Examples
q UNIX shell signal processing
q Distributed systems parallel programming

q Example: ls invoices | grep -e August | sort

Pipe and Filter Style (1/3)

27yannic@comp.nus.edu.sg CS3213 – Foundations of Software Engineering

q Variations
q Pipelines — linear sequences of filters
q Bounded pipes — limited amount of data on a pipe
q Typed pipes — data strongly typed

q Advantages
q System behavior is a succession of component behaviors
q Filter addition, replacement, and reuse

q Possible to hook any two filters together
q Certain analyses

q Throughput, latency, deadlock
q Concurrent execution

Pipe and Filter Style (2/3)

28yannic@comp.nus.edu.sg CS3213 – Foundations of Software Engineering

q Disadvantages
q Batch organization of processing
q Interactive applications
q Lowest common denominator on data transmission

Pipe and Filter Style (3/3)

29yannic@comp.nus.edu.sg CS3213 – Foundations of Software Engineering

❔
How can the Pipe and Filter Style be applied
for our Intelligent Tutoring System and its
components?

30yannic@comp.nus.edu.sg CS3213 – Foundations of Software Engineering

Pipe and Filter Style (applied)

Syntactic
Alignment

Parser

Concretization

Error Localizer

Repair

Feedback Auto-Grading

🧑🏫
Teacher/

Tutor

🧑🎓
Student
(Novice

Programmer)

Interpreter

Reference Program

Submitted Program

<<uses>>

<<uses>>

Reference and Submitted
Program in internal

Program representation

Aligned Programs

Error Locations

Repair Candidates
<<uses>>

Tutoring Feedback

Generated Grading

Intelligent Tutoring System

1
2

3
4

5

6

7

8

31yannic@comp.nus.edu.sg CS3213 – Foundations of Software Engineering

Subscribers register/deregister to receive specific messages or
specific content.
Publishers broadcast messages to subscribers either
synchronously or asynchronously.

Publish-Subscribe (1/3)

32yannic@comp.nus.edu.sg CS3213 – Foundations of Software Engineering

q Components: Publishers, subscribers, proxies for managing distribution
q Connectors: Typically a network protocol is required. Content-based

subscription requires sophisticated connectors.
q Data Elements: Subscriptions, notifications, published information
q Topology: Subscribers connect to publishers either directly or may receive

notifications via a network protocol from intermediaries
q Qualities yielded: Highly efficient one-way dissemination of information with

very low-coupling of components

Publish-Subscribe (2/3)

33yannic@comp.nus.edu.sg CS3213 – Foundations of Software Engineering

Publish-Subscribe (3/3)

34yannic@comp.nus.edu.sg CS3213 – Foundations of Software Engineering

❔
How can the Publish-Subscribe Style be
applied for our Intelligent Tutoring System
and its components?

35yannic@comp.nus.edu.sg CS3213 – Foundations of Software Engineering

Publish-Subscribe (applied)

Parser

🧑🏫
Teacher/

Tutor

🧑🎓
Student
(Novice

Programmer)

Feedback

Subscribed for any available
feedback for any student

Subscribed for any
available source
code to process

Syntactic
Alignment

Error Localizer

Repair

Subscribed to any available
artifact that can be used to

generate some (partial)
feedback.

Publishes alignment
between two

program models.

Publishes error
locations.

Publishes repair
candidates.

Publishes source
code as solution
for programming

assignment.

Publishes
reference source
code as solution
for programming

assignment.

Subscribed for any
available feedback
for own student ID

…
incomplete illustration

Arrows show subscriptions.

36yannic@comp.nus.edu.sg CS3213 – Foundations of Software Engineering

There is more!

“Software Architecture: Foundations,
Theory, and Practice”
by Richard N. Taylor, Nenad Medvidovic,
and Eric M. Dashofy; 2008 John Wiley &
Sons, Inc.

§ Pipe-and-Filter
§ Shared-Data
§ Publish-Subscribe
§ Client Server Style
§ Peer-to-Peer Style
§ Communicating-Processes Style

37yannic@comp.nus.edu.sg CS3213 – Foundations of Software Engineering

❔
Any remaining question about
software architecture?

38yannic@comp.nus.edu.sg CS3213 – Foundations of Software Engineering

