
CS3213 Project – Week 5
Module Design & Project Planning | 09-02-2022

❏ Plagiarism & Attribution
❏ its-core: Program model
❏ Short Intro to Project Planning

1yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 5 – Design & Planning

Plagiarism: How to attribute work?
1. Use code comments to highlight code which is not your

contribution.
2. Summarize all attributions in one file in the parent folder of your

repository: ATTRIBUTIONS.md
❏ You need to specify where in the code we can find the comment for this

attribution (see item 1)
❏ You need to specify the reference: where does the code come from?
❏ You need to specify why you need to include this code

2yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 5 – Design & Planning

its-core: Program model (1/3)

3yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 5 – Design & Planning

„Import“ statements are
important to later
concretize the model

Map from function
name to Function
objects

each function is abstracted as CFG

Control Flow Graph (CFG) Example

4yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 5 – Design & Planning

Branch, Edge

Statement, Node

void CountChar (int &ACount, int &TotalCount)
{

char c;
cin >> c;

while ((c >= 'A') && (c <= 'Z') && (TotalCount < INT_MAX))
{

TotalCount = TotalCount + 1;
if ((c == 'A'))
{

ACount = ACount + 1;

}

cin >> c;
}

}

n1

nstart

n2

n3

n4

n5

nfinal

its-core: Program model (2/3)

5yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 5 – Design & Planning

List of statements at
specific location

Transitions between
basic blocks

extra descriptions
for each location

its-core: Program model (3/3)

6yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 5 – Design & Planning

its-core: Program model (Example 1/2)

7yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 5 – Design & Planning

fun main () : int
--
initloc : 1
Loc 1 (at the beginning of the function 'main')
--
a := 0
b := +(1, a')
$ret := 0

--
True -> null False -> null

#include <stdio.h>
int main() {

int a=0,b=0;
b=1+a;
return 0;

}

Static Single Assignment (SSA)
❏ requires that each variable be assigned exactly once
❏ makes use-def chains explicit
❏ helps to simplify optimizations
❏ helps to formulate local repair

(comparison with reference solution)
❏ enforced on a basic block level

8yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 5 – Design & Planning

x = y - z
s = x + s
x = s + p
s = z * q
s = x * s

x = y - z
s2 = x + s
x2 = s2 + p
s3 = z * q
s4 = x2 * s3

For example: x = y - z
s2 = x’ + s
x2 = s2’ + p
s3 = z * q
s4 = x2’ * s3’

Post-
ProcessingSSA Form

unprimed: before assignment
primed: after assignment

If-Then-Else (ITE)
❏ simplifies model by merging branches if possible
❏ sg.edu.nus.se.its.util.Constants.CONDITIONAL_OPERATOR

9yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 5 – Design & Planning

For example:
fun main () : int
--
initloc : 1
Loc 1 (at the beginning of the function
'main')
--

a := 0
b := +(1, a')
c := ite(>(b', 1), 3, 5)
$ret := 0

--
True -> null False -> null

#include <stdio.h>
int main() {

int a=0,b=0,c=0;
b=1+a;
if (b > 1) {

c = 3;
} else {

c = 5;
}
return 0;

}

10yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 5 – Design & Planning

fun main () : int
--
initloc : 1
Loc 1 (at the beginning of the function 'main')
--
result := 0
i := 0

--
True -> 2 False -> null

Loc 2 (the condition of the 'for' loop at line 3)
--
$cond := <(i, 5)

--
True -> 5 False -> 4

Loc 3 (update of the 'for' loop at line 3)
--
i := +(i, 1)

--
True -> 2 False -> null

Loc 4 (*after* the 'for' loop starting at line 3)
--
--
True -> null False -> null

Loc 5 (inside the body of the 'for' loop beginning at line 3)
--
result := +(result, i)

--
True -> 3 False -> null

int main() {
int result = 0;
for (int i = 0; i < 5; i++) {

result += i;
}

}

1

2

5

3

4

int result = 0;
int i = 0;

i < 5

result += i;

i++;

(end of
function)

its-core: Program model
(Example 2/2)

its-core: Program model (Current Limitations)

11yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 5 – Design & Planning

❏ current assumption: program is compilable
❏ not supported yet: pointer and multi-dimensional arrays

Parser API

12yannic@comp.nus.edu.sg CS3213 FSE – Lab Week 4

Deployed as POST service, accessible within the SoC VPN:
❏ http://cs3213-i.comp.nus.edu.sg:4000/parse-c
❏ http://cs3213-i.comp.nus.edu.sg:4000/parse-python

❏ Input: program in .c or .py source file
❏ Output: internal program object in json format
❏ Purpose: prepare test inputs for your test cases / evaluation

http://cs3213-i.comp.nus.edu.sg:4000/parse-c
http://cs3213-i.comp.nus.edu.sg:8080/parse-python

How to use: Parser API (1/2)

13yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 5 – Design & Planning

❏ For example, you can use
the tool Postman1 to send
POST requests to our server

❏ POST body should have the
key „program“ and as value
the source code

1 https://www.postman.com (you can use the free version)

https://www.postman.com/

How to use: Parser API (2/2)

14yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 5 – Design & Planning

#include <stdio.h>
int main() {

int a=0,b=0;
b=1+a;
return 0;

}

{
"importStatements": [
"#include \u003cstdio.h\u003e"

],
"fncs": {
"main": {
"name": "main",
"rettype": "int",
"initloc": 1,
"endloc": 0,
"params": [],
"locexprs": {
"1": [
{
"val0": "a",
"val1": {
"value": "0",
"line": 3,
"tokentype": "Constant"

},
"valueArray": [
"a",
{
"value": "0",
"line": 3

}
],
"valueList": [
"a",
{
"value": "0",
"line": 3

}
]

},
...

http://cs3213-i.comp.nus.edu.sg:4000/parse-c

http://cs3213-i.comp.nus.edu.sg:4000/parse-c

How to import program as .json

15yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 5 – Design & Planning

à sg.edu.nus.se.its.util.TestUtils

à sg.edu.nus.se.its.parser.BasicTest

❔
Any remaining question about the
Program model or the API?

16yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 5 – Design & Planning

Project Management Tasks

17yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 5 – Design & Planning

❏ Product Quotation
❏ Project and Time Planning
❏ Project Cost Calculation
❏ Project Supervision and Review
❏ Selection/Hiring, Assessment, and Leading of Team Members
❏ Presentation and Creation of Reports
❏ Securing good surrounding conditions

Project Planning - Aspects

18yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 5 – Design & Planning

Task Planning Work Packages

Time Planning Milestones, Releases

Resource
Planning Effort, Staff, Budget

Work Packages

19yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 5 – Design & Planning

Work Package ID:
a100.5

Project: C Parser
Phase: Implementation

Task: Description
Results
Steps
Critical Resources

Cost: Plan
3 PD (=24 hours)

Real

Dates:
Stub xyz
Module cyz
…

10/02/2022
17/02/2022
…

Created by: YN
Authorized by: ZF

04/12/2021
06/12/2021

❏ Work Package = result & partial results
+ cost estimation
+ (after completion) real cost

❏ a task is suitable as work package if:
❏ it can be done without further coordination

constraint / dependency,
❏ the progress and the end can be determined in

an objective fashion,
❏ there are events that impact the start and the

end, and
❏ the cost and the deadlines can be estimated.

Sample Layout

Gantt-Charts (Example)

20yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 5 – Design & Planning

Work Packages
& Tasks

(Example taken from a Research Project)

Responsibility Duration
Estimation Time Plan

Dependencies

Planning
scope

Program Evaluation and Review
Technique (PERT)

21yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 5 – Design & Planning

Work Package
(WP)

Duration
(e.g., days)

Depends on

A 6 –

B 8 –

C 5 –

D 15 A

E 17 A

F 13 B

G 9 C

H 9 D

I 6 E

J 12 F, G

A, 6

D, 15

B, 8

C, 5
G, 9

F, 13

E, 17

H, 9

I, 6

J, 12

0 6

0 8

0 5
5 14

8 21 21 33

6 23

21 30

23 29

6 21

24

21 33

27 33

33

9 3

0 8

7 12
12 21

8 21

10 27

9 24

3 4

3

3

4

0
0

7
7

0

ES=Earliest Start
EF=Earliest Finish
LS =Latest Start
LF=Latest Finish

S=„Slack“

ES EF
LS LF

S

WP, Duration

à Identify the critical path, i.e., any delay
along this path will delay the complete project

Planning & Retrospective

22yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 5 – Design & Planning

à Milestone Trend Analysis (MTA), continuous task in project planning

t (planned)

t (real)

M1

M2

M3

today

t (planned)

t (real)

M1

M2

M3

A sign of bad
management skills
would be a lot of

updates along the
half-line.

Checklist Project Planning

23yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 5 – Design & Planning

❏ Select process model
❏ Derive project plan
❏ Determine and fix milestones
❏ Estimate Cost (i.e., time effort)
❏ Resource Planning
❏ Duration = Time Effort / Ressources

❏ Planning Review (e.g., PERT)
❏ Check Optimizations
❏ Reduce Risks
❏ Create Gantt-Chart
❏ Ressource Allocation
❏ …

Next Lecture (Project-Part) – Week 6:
Implementation & Intermediate Deliverable (A6)
Ø Discussion Implementation (Clean Code) & Testing
Ø Assignment 6: Intermediate Deliverable (Content + Grading)

Conclusion
❏ Use Parser API to prepare test inputs.
❏ Next step: exploring the solution space à start implementation

24yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 3 – Requirements Modeling

