
CS3213 Project – Week 6
Unit Testing | 16-02-2022

1yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 6 – Unit Testing

Important Upcoming Deadlines

2yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 6 – Unit Testing

q Intermediate Deliverable: Tuesday, 01/03/2022, 10 pm (Week 7)
q Final Code Submission: Tuesday, 12/04/2022, 10 pm (Week 13)
q Presentations: Wednesday, 13/04/2022 (Week 13)
q Final Report Submission: Wednesday, 20/04/2022, 10 pm (Reading Week)

GitHub Classroom

3yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 6 – Unit Testing

Use your GitHub repository
for your coding! Not just as

submission platform.

To get feedback: Assign one of the tutors as
Reviewer or mention our GitHub names in

comments/PRs.

Software (Unit) Testing

4yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 6 – Unit Testing

Goals of this lecture:
q Testing Terminology & Motivation
q Basic Testing Process
q Functional Unit Testing: Equivalence Class Analysis
q JUnit Testing

Testing Terminology

5yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 6 – Unit Testing

Failure
(Error Effect)

that occurs during runtime

Fault
(Error State)

in the program

Error/Mistake

Created by
Developer

Verification +
Testing

static

Debugging

Standards, Norms,
Experience

dynamic

Chain of Error

6yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 6 – Unit Testing

q All error conditions and defects occur during completion:
q The error effect (failure) occurs during the execution of the program.

q The error effect is generated by an error state (fault) in the software.

q The error condition is triggered by the error action (mistake) of a human
(programmer).

q Fault masking: “An occurrence in which one defect prevents the detection of
another” [IEEE 610]

q To detect a fault state, the normal situation must be defined.

(Dynamic) Testing

7yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 6 – Unit Testing

q Advantages
q Testing is a natural validation procedure!
q The test is (possibly) reproducible and therefore objective.
q Test, once well organized, can be repeated very cheaply.
q Target environment (translator, OS, etc.) is also checked.
q System behavior is made visible.

q Disadvantages
q Expressiveness of tests is overestimated, does not show correctness, because even the

state spaces of small programs are huge.
q Test says nothing about most software features.
q It is not possible to replicate all application situations.
q The test does not show the cause of the error.

Foundations of Testing

8yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 6 – Unit Testing

q Some fundamentals have been established over the last 50 years.

»Program testing can be used to show the presence of bugs,
but never to show their absence!«

Edsger W. Dijkstra, 1970

»Complete testing is not possible«
»Start as early as possible with testing«

q Testing is not a late phase of the development process, but should be
included as early as possible. The sooner errors are found, the lower the
costs.

Testing: Basic Rules

9yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 6 – Unit Testing

q Testing (like all validation effort) must be planned.
q Testing requires independence.
q Testing is a creative and challenging activity.
q Testing is destructive.
q Every test case has an expected outcome.
q Complete testing is impossible.

Planning and

Analysis and Design

Realization and
Implementation

Conclusion

Start

End

Control

Evaluation and Report

Testing Levels

10yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 6 – Unit Testing

Analysis

Specification

Architecture/
Design

Implementation Unit

Integration

System

Acceptance
Usage Scenarios

Test Cases

Test Cases

Test Cases

Rules for Test Execution

11yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 6 – Unit Testing

q no abort of the test after the first deviation
q no special test variant of the program
q no switching between test and debugging

Advantages:
q effort can be estimated
q identification of basic defects
q no cumulative corrections
q efficient use of the test harness
q no damage to the test item due to forgotten additives
q results concern the product

Testing Advice

12yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 6 – Unit Testing

Regardless of the software development model chosen, the following aspects have
proven useful for testing:
q For every development activity there is a corresponding test activity.
q Testing activities should start early in the development cycle. Test analysis and

test design should begin in parallel with the corresponding development stage.
q Involve testers early in the review process of development documents.
q Software development models should not be used "out of the box". They must

be adapted to project and product characteristics (e.g., number of test stages
to be applied, number and length of iterations, etc. must be adapted per project
context).

q Translated with www.DeepL.com/Translator (free version)

Goal of (Dynamic) Testing

13yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 6 – Unit Testing

The goal of dynamic testing procedures is to generate test cases of a sample of
the possible inputs that are:
q representative,
q error-sensitive,
q low redundancy and
q economical.

Black-Box Test
Functional Test

Test data selection according to the
(targeted) characteristics of the program
to be tested (function, response time),
i.e., according to the specification.

White-Box Test Test data selection under the influence
of the internal structure of the program.

Equivalence Class Analysis (1/2)

14yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 6 – Unit Testing

q Creation of equivalence classes of input values based on the functional
properties of the program or better its functional specification.

q Values from an equivalence class
q cause identical functional behavior and

q test an identical specified program function.

q Creation equivalence classes based on the specification ensures that all
specified program functions are tested with values from their assigned
equivalence class.

q Equivalence classes can also be created from the output value ranges.

Equivalence Class Analysis (2/2)

15yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 6 – Unit Testing

q Procedure (attributed to [Myers, 1979]): Equivalence Class Partitioning
1. Identify: input variables, equivalence classes for valid and invalid inputs
2. Divide classes further intuitively, if necessary
3. Select input data for each class, determine expected outcomes

q The equivalence classes are to be numbered unambiguously. The generation of
test cases from the equivalence classes requires two rules:
q The test cases for valid equivalence classes are formed by selecting test data from as

many valid equivalence classes as possible.
q The test cases for invalid equivalence classes are formed by selecting a test data from

an invalid equivalence class. It is combined with values taken exclusively from valid
equivalence classes.

q Often used: Test of equivalence class boundaries (Boundary Value Analysis).

Equivalence Class Partitioning
(Example 1/4)

16yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 6 – Unit Testing

q A program to calculate the factorial of n.

“In mathematics, the factorial of a non-negative
integer n, denoted by n!, is the product of all
positive integers less than or equal to n.”

https://en.wikipedia.org/wiki/Factorial

natural number

other input

https://en.wikipedia.org/wiki/Factorial

Equivalence Class Partitioning
(Example 2/4)

17yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 6 – Unit Testing

q A program to calculate the factorial of n.
q A program that is to calculate the factorial of n must reject (1) negative numbers,

(2) real fractions, (3) numbers whose factorial is too large (n≥13), and (4)
syntactically incorrect inputs. Special case: 0!

natural number

other input

natural number
but too large

(≥13)

Refinement
negative number

non-integer

syntactical
incorrect

=0
natural number

<13

results in
6 classes

Test Case Selection
(Example 3/4)

18yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 6 – Unit Testing

q Choose representatives for each class and
determine the expected outcome.

natural number
but too large

(≥13)

negative number
non-integer

syntactical
incorrect

=0
natural number

<13
Class Input Expected Outcome
Negative number -5 Error message
Non-integer 3.14 Error message
Too large number 100 Error message
Syntactical Incorrect input “ABC” Error message
Normal/expected input 7 5040
Zero 0 1

Boundary Value Analysis
(Example 4/5)

19yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 6 – Unit Testing

q For even better validation, in addition to a representative representative of an
equivalence class, its limits should also be tested by limit values.

q Usually one uses a value below, on and above the limit.
q In the example we have the limit case 12, so besides 12 we should also test

11 and 13. The reason for the effectiveness of boundary tests is that in
programming one often does not implement boundary cases correctly, for
example by using ">" instead of "≥".

Boundary Value Analysis
(Example 5/5)

20yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 6 – Unit Testing

natural number
but too large

(≥13)

negative number
non-integer

syntactical
incorrect

=0
natural number

<12

Class Input Expected Outcome
Negative number -5 Error message
Non-integer 3.14 Error message
Too large number 100 Error message
Syntactical Incorrect input “ABC” Error message
Normal/expected input 7 5040
Zero 0 1
Boundary Value 12 479001600
Boundary Value -1 11 39916800
Boundary Value +1 13 Error message

=12

boundaries

❔
Any remaining question about
Equivalence Class Testing?

21yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 6 – Unit Testing

❔Exercise: Equivalence Class Testing

22yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 6 – Unit Testing

A program for the warehouse management of a building materials store has an
input option for the registration of deliveries. If wooden boards are delivered, the
type of wood is entered. The program knows the wood types oak, beech and
pine. Furthermore, the length in centimeters is specified, which is always between
100 and 500. A value between 1 and 9999 can be entered as the delivered
number of items. In addition, the delivery is given an order number. Each order
number for wood deliveries starts with the letter “H”.

(a) Derive equivalence classes using the above specification. Note:
• For each of the four function parameters there exists at least one valid

and one invalid equivalence class.
• You can assume that type conformity of the function parameters is

guaranteed, i.e., invalid equivalence classes for non-type conform input
values need not be considered.

❔Exercise: Equivalence Class Testing

23yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 6 – Unit Testing

(b) Now derive a minimal set of test cases so that each equivalence class is
tested by at least one representative. For this example, it is okay to ignore
the expected outcome and only name the inputs for each test case. The
expected outcome cannot be inferred from the specification above.

The solution will be discussed in Week 7.

Unit Testing

24yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 6 – Unit Testing

“In this test, individual, manageable program program units are tested, depending on the
programming language, e.g., functions, subroutines or classes.”

Ludewig/Lichter, 2007

q Each component is tested individually, in isolation.
q Implemented software units are tested systematically.
q Error conditions can be clearly traced back to the source.
q Components can be interconnected, this is not considered in unit testing and

only the component in itself is tested.
q Unit tests are based on the component specification, the code and all related

documents.

Unit Testing in Java with JUnit

25yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 6 – Unit Testing

q JUnit is a unit testing framework for Java.
q It is now considered the standard for unit testing in Java.
q Originally developed by Kent Beck and Erich Gamma.
q Current version JUnit 5: http://junit.org/

Motto: „Keep the bar green to keep the code clean!“
Visualization by means of colored bar: if the test finds no errors, the bar
turns green; a red bar indicates errors.

Examples and project-related workflow will be shown in the Lab!

http://junit.org/

Characteristics of JUnit

26yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 6 – Unit Testing

q Separation of application and test code.
q Test cases often structured in a separate class hierarchy.
q Individual test cases independent of each other (but can also be combined).
q Display of result immediately after execution by colored bar.
q Integration into many IDEs (e.g. Eclipse, IntelliJ, Netbeans, ...).

❔
What are the attributes of a
“good” Test Case?

27yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 6 – Unit Testing

The solution will be discussed in Week 7.

Test Driven Development (TDD)

28yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 6 – Unit Testing

q Refers to a style of software development that focuses on testing.
q The three core tasks of coding, testing and design are carried out in an

interactive manner.
q The procedure described below maps the simple rules of Test-Driven

Development in an incremental/iterative process for the implementation of one
feature.

Based on Broy and Kuhrmann.
“Introduction to Software
Engineering” (Xpert.press), 2021.

Write/Modify
Test Case

Execute Test
Case

Implement/Modify
Code

Execute Test
Case

Clean Code
(Refactoring)

[test fails]

[test successful]
[finished]

[test
successful]

[at least one
failing test]

Three Laws of TDD (by Kent Beck)

29yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 6 – Unit Testing

Rule 1:
You may not write production code until you have
written a failing unit test.

Rule 2:
You may not write more of a unit test than is sufficient
to fail, and not compiling is failing.

Rule 3:
You may not write more production code than is
sufficient to pass the currently failing test.

K. Beck. “Test Driven Development: By Example.” Addison-Wesley Longman, 2002.

TDD – Implications

30yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 6 – Unit Testing

R. C. Martin. “Clean Code: A Handbook of Agile Software Craftsmanship.” Prentice Hall, 2008. 46.

It is important to note that it is explicitly not in the spirit of TDD to create all test cases before starting to write
production code. “Clean Code” recommends writing tests and production code alternately and switching between
these two activities in "micro-iterations" lasting only a few minutes.

Change of perspective

Testability

Documentation

When creating test cases, developers become "users" of
the code, which means that developers now have to deal
with the interface of the respective module.

The tests can also be seen as part of the documentation of
the software. E.g., how to instantiate objects, how to use
software and components.

!
Try Test Driven Development (TDD)
yourself!

31yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 6 – Unit Testing

We can discuss your experience in the lab
and at the end of the lecture!

Next Week: Recess Week (no lecture/labs)

In Two Weeks (Project-Part) – Week 7:
Advanced Unit Testing
Ø Discussion Testing Best Practices and Coverage Metrics
Ø Assignment 7: Unit Testing

Conclusion
❏ Use Parser API to prepare test inputs.
❏ Next step: exploring the solution space à start implementation

32yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 6 – Unit Testing

