
CS3213 Project – Week 12
Summary | 06-04-2022

❏ Survey on “Interactive Repair”
❏ Recap: All Topics (Requirements to Integration)
❏ Aspects of Version Control

1yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

The slides contain additional
comments in such yellow boxes.

Topics

2yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

❏ Requirements Elicitation – Analysis Techniques (Questions, Interviews, …)
❏ Requirements Modeling – GORE, Use Case, Activity Diagram, etc.
❏ Architecture: Architectural Drivers, Structures (Static + Dynamic), Architectural

Styles
❏ Module Design: Design Pattern, Design Principles
❏ Project Planning: Work Packages, Gantt-Charts, PERT, Milestone Trend Analysis
❏ Implementation: Clean Code
❏ Testing: Foundations + Equivalence Class Partitioning, JUnit, TDD, Testable Code,

Clean Tests, Code/Test Coverage, Static Analyzers (Checkstyle, Spotbugs, PMD)
❏ Debugging: TRAFFIC, Reducing the input (delta debugging), Reducing the

program (slicing), SBFL/SFL, Interactive Debugging
❏ Software Integration Strategies and Integration Testing

The shown topics have been discussed
throughout the lecture’s project part and in
the labs. The following slides will recap
them and emphasize on important aspects.

Assignments
❏ A1 – Requirements Analysis & Elicitation
❏ A2 – Requirements Modeling
❏ A3 – Behavioral Modeling & Architectural Drivers
❏ A4 – Module Design / Strategy Plan
❏ A5 – Project Planning
❏ A6 – Intermediate Deliverable
❏ A7 – Unit Testing
❏ A8 – Presentation + Final Code
❏ A9 – Final Report

With the assignments, we covered many
important aspects. The common mistakes have
been discussed in the labs (you can check these
slides separately), and individual feedback has
been given via LumiNUS.

3yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

Topics

4yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

❏ Requirements Elicitation – Analysis Techniques (Questions, Interviews, …)
❏ Requirements Modeling – GORE, Use Case, Activity Diagram, etc.
❏ Architecture: Architectural Drivers, Structures (Static + Dynamic), Architectural

Styles
❏ Module Design: Design Pattern, Design Principles
❏ Project Planning: Work Packages, Gantt-Charts, PERT, Milestone Trend Analysis
❏ Implementation: Clean Code
❏ Testing: Foundations + Equivalence Class Partitioning, JUnit, TDD, Testable Code,

Clean Tests, Code/Test Coverage, Static Analyzers (Checkstyle, Spotbugs, PMD)
❏ Debugging: TRAFFIC, Reducing the input (delta debugging), Reducing the

program (slicing), SBFL/SFL, Interactive Debugging
❏ Software Integration Strategies and Integration Testing

“The hardest single part of building a software system is deciding
precisely what to build. No other part of the conceptual work is as
difficult as establishing the detailed technical requirements ...
No other part of the work so cripples the resulting system if done
wrong. No other part is as difficult to rectify later.”

Requirements Analysis & Elicitation

Brooks, F. P., “No silver bullet – essence and accidents of software engineering” in IEEE Computer, Vol. 20 (4), 10-19, 1987.

Requirements We started the project with requirements, in
particular, with their elicitation in our customer
interview session. Note that ”getting the
requirements right” is one of the key
difficulties in software engineering. It requires
proper Requirements Analysis & Elicitation.

5yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

Main Focus
Analysis Technique “As-Is” State “To-Be” State Innovation Impact

Analysis of existent data and
documents
Observation
Survey
with

Interview

Modelling
Experiments
Prototyping
Participative Development
(wrt analysis)

closed
structured questions
open

Requirement Analysis Techniques

We performed an interview with the
customers and prepare questions. Note that
it is important to elicit the “as-is” state as
well as the “to-be” state. Depending on the
scenario and goal, there are various analysis
techniques like shown on this slide.

6yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

Ø Purpose of the software

Ø Functional Requirements

Ø Requirements to External Interface

Ø Requirements Regarding Technical Data

Ø General Constraints and Requirements

Ø Product Quality Requirements

ISO/IEC/IEEE 29148:2018, ISO/IEC/IEEE International Standard - Systems and software engineering -- Life cycle processes --
Requirements engineering, 2018, DOI: 10.1109/IEEESTD.2018.8559686 à page 67 to 74

ISO/IEC/IEEE 29148:2018(E)

��� ��� ���������� ��� ��������� ���� ����� ����� ���� ���� ������ ��� ���� ������ �������� ����Ǥ� ���� �������������
���Ǥ���������������
����� ���������� ������ ������ ��� �� ������������ �����ϐ�������� ����� ������� ���� ����������� �������� ����
������� ���� ���� ��������� �������ǡ� ���� ������� ��������� ������������ ���� �������������� �������������
�������������������������Ǥ����������ǡ���
������������Ǥ���Ǥ�����������ϐ������������
��������������������������������������ϐ��ǡ������������������������
��ǡ����������������������ϐ��������
�������������������������������

8.5.2 SRS example outline

���������ϐ��
���Ǥ�������������
��Ǥ�������������������������������������Figure 8.

Figure 8 — Example SRS Outline

�����ͳ� ��ͻǤ.

���ǣ

Ȅ� ������������ Ǧ� ����� �� ������������ ���������Ǥ� 	���
�������ǡ��� ����������������������� ��������ǣ� ��������ǡ�
������ǡ����������������������Ǥ

Ȅ� ����� ������ Ǧ� ����� �������� �������� ���������� ����� ��� ���������� ��� ���������� �������� ��� �����Ǥ� 	���
�������ǡ� ��� ��������� �������� ������� ��������� ���������� ������������� ��� ����������ǡ� ������������
������������ϐ���ϐ�������Ǥ

© ISO/IEC 2018 – All rights reserved
ͷ © IEEE 2018 – All rights reserved

Authorized licensed use limited to: Cornell University Library. Downloaded on September 03,2020 at 11:09:54 UTC from IEEE Xplore. Restrictions apply.

SRS outline (IEEE 29148:2018)

How to find good questions?
❏ Which topics need to be covered in the

requirement specification?

Good questions can be
found by looking into the
relevant aspects of a
specification. The result of
the requirements engineering
phase will be the
requirement specification, so
it makes sense to think
about which questions need
to be answered by the
stakeholders to write such a
specification.

7yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

http://doi.org/10.1109/IEEESTD.2018.8559686

Requirement Elicitation
– Closing Remarks
❏ begin gentle and proceed with caution
❏ prepare your catalogue of questions and ask systematically
❏ reveal contradictions
❏ special cases usually require more effort as the default case – you

need to explore all eventualities in the system with the customer
❏ do not forget the „as-is“ state
❏ Jewish motherhood (example of the door access system)

These remarks have been discussed
after our requirement elicitation session
with the customer.

8yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

Topics

9yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

❏ Requirements Elicitation – Analysis Techniques (Questions, Interviews, …)
❏ Requirements Modeling – GORE, Use Case, Activity Diagram, etc.
❏ Architecture: Architectural Drivers, Structures (Static + Dynamic), Architectural

Styles
❏ Module Design: Design Pattern, Design Principles
❏ Project Planning: Work Packages, Gantt-Charts, PERT, Milestone Trend Analysis
❏ Implementation: Clean Code
❏ Testing: Foundations + Equivalence Class Partitioning, JUnit, TDD, Testable Code,

Clean Tests, Code/Test Coverage, Static Analyzers (Checkstyle, Spotbugs, PMD)
❏ Debugging: TRAFFIC, Reducing the input (delta debugging), Reducing the

program (slicing), SBFL/SFL, Interactive Debugging
❏ Software Integration Strategies and Integration Testing

GORE Modeling

Goals are introduced for pragmatic or engineering
reasons – they help accomplish the objectives of
several specific subtasks of requirements
engineering.

“A goal is a desirable state lying in the future,
which is not reached automatically but by specific

actions.”

Goal-oriented analysis focuses on the
description and evaluation of alternatives and their
relationship to the organizational objectives.

10yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

❏ clarifying requirements
❏ modeling techniques need to support "why" and "how else" types of reasoning

analysis
❏ incremental process

❏ provide traceability of rationales
❏ management of change
❏ verification of achievement of requirements
❏ support of reuse

Common Modeling Purposes

Remember: Different models
have different purposes. We
looked into use case models,
goal models, activity models and
more. You should be aware of all
these models, their syntax,
semantics and purpose.

11yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

Topics

12yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

❏ Requirements Elicitation – Analysis Techniques (Questions, Interviews, …)
❏ Requirements Modeling – GORE, Use Case, Activity Diagram, etc.
❏ Architecture: Architectural Drivers, Structures (Static + Dynamic),

Architectural Styles
❏ Module Design: Design Pattern, Design Principles
❏ Project Planning: Work Packages, Gantt-Charts, PERT, Milestone Trend Analysis
❏ Implementation: Clean Code
❏ Testing: Foundations + Equivalence Class Partitioning, JUnit, TDD, Testable Code,

Clean Tests, Code/Test Coverage, Static Analyzers (Checkstyle, Spotbugs, PMD)
❏ Debugging: TRAFFIC, Reducing the input (delta debugging), Reducing the

program (slicing), SBFL/SFL, Interactive Debugging
❏ Software Integration Strategies and Integration Testing

Comments to Software
Architecture

Requirements

Code

???
How to bridge the gap
between requirements and
code?

After various aspects of requirements engineering we looked
briefly into the problem of software architecture and later also
discussed some architectural styles in more detail.

The architecture becomes the bridge between requirements
and implementation. Without proper architecture, the
implementation is unpredictable and costly. Architecture
becomes the tool for managing the complexity.

13yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

https://medium.com/@janerikfra/architectural-drivers-
in-modern-software-architecture-cb7a42527bf2

Architectural Drivers
❏ Business goals
❏ Customer organization
❏ Developing organization

❏ Quality attributes
❏ Key functional requirements
❏ Unique properties
❏ Make system viable

❏ Constraints
❏ Organizational and technical
❏ Cost and time

Before thinking about concrete architecture,
you should think about the key requirements
that may drive the architecture. Such
requirements require specific architectures to
be supported or put general constraints on the
solution space.

14yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

https://medium.com/@janerikfra/architectural-drivers-in-modern-software-architecture-cb7a42527bf2

Stuctures!

❏ What elements are there?
❏ How are they interconnected?
❏ What does the connection mean?

Overall conceptual idea:
à Each part can be built fairly independently of the other parts
à However, these parts must be put together to solve the larger

problem in the end

Thinking about the software architecture is
thinking about structures.

Static: What kind of components do we
need to achieve the overall goal?

Dynamic: How do these components
interact with each other?

15yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

Architecture Essentials –
Design Principles
❏ Abstraction
❏ Separation of Concerns
❏ Decomposition: divide & conquer
❏ Modularization: coupling & cohesion
❏ Encapsulation: information hiding
❏ Well-Defined Interfaces
❏ Architectural Styles

§ Pipe-and-Filter
§ Shared-Data
§ Publish-Subscribe
§ Client Server Style
§ Peer-to-Peer Style
§ Communicating-Processes Style

Architectural Design Principles and Styles are
important aspects for the design of the overall
system. You should be aware of the most
common principles and styles so that you can join
discussions in practice.

16yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

There is more!

“Software Architecture: Foundations,
Theory, and Practice”
by Richard N. Taylor, Nenad Medvidovic,
and Eric M. Dashofy; 2008 John Wiley &
Sons, Inc.

§ Pipe-and-Filter
§ Shared-Data
§ Publish-Subscribe
§ Client Server Style
§ Peer-to-Peer Style
§ Communicating-Processes Style

Note: We only covered a small portion
of software architecture literature.

17yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

Topics

18yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

❏ Requirements Elicitation – Analysis Techniques (Questions, Interviews, …)
❏ Requirements Modeling – GORE, Use Case, Activity Diagram, etc.
❏ Architecture: Architectural Drivers, Structures (Static + Dynamic), Architectural

Styles
❏ Module Design: Design Pattern, Design Principles
❏ Project Planning: Work Packages, Gantt-Charts, PERT, Milestone Trend Analysis
❏ Implementation: Clean Code
❏ Testing: Foundations + Equivalence Class Partitioning, JUnit, TDD, Testable Code,

Clean Tests, Code/Test Coverage, Static Analyzers (Checkstyle, Spotbugs, PMD)
❏ Debugging: TRAFFIC, Reducing the input (delta debugging), Reducing the

program (slicing), SBFL/SFL, Interactive Debugging
❏ Software Integration Strategies and Integration Testing

its-core: Program model (1/3)

„Import“ statements are
important to later
concretize the model

Map from function
name to Function
objects

each function is abstracted as CFG

We looked into the module design of
our ITS baseline.

19yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

Control Flow Graph (CFG) Example

Branch, Edge

Statement, Node

void CountChar (int &ACount, int &TotalCount)
{

char c;
cin >> c;

while ((c >= 'A') && (c <= 'Z') && (TotalCount < INT_MAX))
{

TotalCount = TotalCount + 1;
if ((c == 'A'))
{

ACount = ACount + 1;

}

cin >> c;
}

}

n1

nstart

n2

n3

n4

n5

nfinal

We discussed basics in program analysis
like the control flow graph, the meaning
single static assignment, and how it fits
to our internal program model.

20yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

Discussion: Module Designs (1/2)

q Be aware of the syntactical elements in
UML Class diagrams.

q Class diagrams, on the macro level, have:
q Classes
q Associations
q Aggregations (‘has-a’ relationship)
q Compositions (’part-of’ relationship)
q Inheritances

q Class diagrams, on the micro level, have:
q Attributes / Fields
q Operations
q Abstract and concrete

operations/classes We recapped important aspects
of module design with
structural and behavioral
diagrams.

21yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

Design Principles
q SOLID

q S – Single Responsibility Principle
q O – Open/Closed Principle
q L – Liskov Substitution Principle
q I – Interface Segregation Principle
q D – Dependency Inversion Principle

q GRASP – General Responsibility Assignment Software
Principles e.g., high cohesion & low coupling

q DRY vs WET “don’t repeat yourself” vs “write everything
twice”/“waste everyone's time”

q KISS: ”Keep it simple, stupid” and YAGNI: “You aren’t
gonna need it”

Software components should be open for
extension, but closed for modification

One class should have one and only one responsibility.

Objects in a program should be replaceable
with instances of their subtypes without
altering the correctness of that program.

Keep interface as small as possible.

Depend on abstractions, not on concretions.

Design principles are general advices that
help you to keep your design clean from
typical mistakes.

22yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

Design Patterns (Gamma et al., 1995)

q Creational Patterns
q Instantiation of objects
q Example: Singleton

q Structural Patterns
q Solution of distinct structuring problems
q Example: Composite

q Behavioral Patterns
q Solution of specific behavior aspects
q Example: Visitor

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. "Design Patterns. Elements of Reusable Object-Oriented Software."
Addison-Wesley Publishing Company (1995).

1. Intent
2. Motivation
3. Applicability
4. Structure
5. Participants
6. Collaborations
7. Consequences
8. Implementation / Sample Code
9. Related Patterns

Pattern Description Language/Structure

We covered the basics for design patterns
and covered some of them in the lecture as
well as in the labs. Note that it is not the goal
to include as many patterns as possible but
to use them appropriately. It is about to
know them and to use them correctly in
discussions.

When is the module design finished?
You can ask yourself:
• Can you start coding now?
• Can the work effort by distributed in you team?
Some design parts will likely change during
development… Interfaces should not.

23yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

Topics

24yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

❏ Requirements Elicitation – Analysis Techniques (Questions, Interviews, …)
❏ Requirements Modeling – GORE, Use Case, Activity Diagram, etc.
❏ Architecture: Architectural Drivers, Structures (Static + Dynamic), Architectural

Styles
❏ Module Design: Design Pattern, Design Principles
❏ Project Planning: Work Packages, Gantt-Charts, PERT, Milestone Trend

Analysis
❏ Implementation: Clean Code
❏ Testing: Foundations + Equivalence Class Partitioning, JUnit, TDD, Testable Code,

Clean Tests, Code/Test Coverage, Static Analyzers (Checkstyle, Spotbugs, PMD)
❏ Debugging: TRAFFIC, Reducing the input (delta debugging), Reducing the

program (slicing), SBFL/SFL, Interactive Debugging
❏ Software Integration Strategies and Integration Testing

Gantt-Charts (Example)

Work Packages
& Tasks

(Example taken from a Research Project)

Responsibility Duration
Estimation Time Plan

Dependencies

Planning
scope

Aspects of project planning are task planning, time planning,
and resource planning. The Gantt-Chart helps you to list your
identified work packages and show their dependencies and
the time plan with your project milestones.

25yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

Program Evaluation and Review
Technique (PERT)

Work Package
(WP)

Duration
(e.g., days)

Depends on

A 6 –

B 8 –

C 5 –

D 15 A

E 17 A

F 13 B

G 9 C

H 9 D

I 6 E

J 12 F, G

à Identify the critical path, i.e., any delay
along this path will delay the complete project

One crucial step in planning
is to identify risks and
mitigate them. PERT helps
you identify the critical path,
i.e., the work packages that
will delay the complete
project if they are not
finished on time.

26yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

Planning & Retrospective
à Milestone Trend Analysis (MTA), continuous task in project planning

t (planned)

t (real)

M1

M2

M3

today

t (planned)

t (real)

M1

M2

M3

A sign of bad
management skills
would be a lot of

updates along the
half-line.

To improve planning, it is important to keep
track of decisions and eventually perform a
proper retrospective. The Milestone Trend
Analysis supports you for that.

27yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

Topics

28yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

❏ Requirements Elicitation – Analysis Techniques (Questions, Interviews, …)
❏ Requirements Modeling – GORE, Use Case, Activity Diagram, etc.
❏ Architecture: Architectural Drivers, Structures (Static + Dynamic), Architectural

Styles
❏ Module Design: Design Pattern, Design Principles
❏ Project Planning: Work Packages, Gantt-Charts, PERT, Milestone Trend Analysis
❏ Implementation: Clean Code
❏ Testing: Foundations + Equivalence Class Partitioning, JUnit, TDD, Testable Code,

Clean Tests, Code/Test Coverage, Static Analyzers (Checkstyle, Spotbugs, PMD)
❏ Debugging: TRAFFIC, Reducing the input (delta debugging), Reducing the

program (slicing), SBFL/SFL, Interactive Debugging
❏ Software Integration Strategies and Integration Testing

Robert C. “Uncle Bob” Martin:
Clean Code: A Handbook of
Agile Software Craftsmanship
Prentice Hall, 2008

Every software developer should be aware of clean code.
Therefore, we covered some relevant aspects: meaningful
names/identifiers, clean functions and comments, code
formatting, clean objects and data structures, clean error
handling and clean unit tests.

29yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

Topics

30yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

❏ Requirements Elicitation – Analysis Techniques (Questions, Interviews, …)
❏ Requirements Modeling – GORE, Use Case, Activity Diagram, etc.
❏ Architecture: Architectural Drivers, Structures (Static + Dynamic), Architectural

Styles
❏ Module Design: Design Pattern, Design Principles
❏ Project Planning: Work Packages, Gantt-Charts, PERT, Milestone Trend Analysis
❏ Implementation: Clean Code
❏ Testing: Foundations + Equivalence Class Partitioning, JUnit, TDD,

Testable Code, Clean Tests, Code/Test Coverage, Static Analyzers
(Checkstyle, Spotbugs, PMD)

❏ Debugging: TRAFFIC, Reducing the input (delta debugging), Reducing the
program (slicing), SBFL/SFL, Interactive Debugging

❏ Software Integration Strategies and Integration Testing

Testing Terminology Failure
(Error Effect)

that occurs during runtime

Fault
(Error State)

in the program

Error/Mistake

Created by
Developer

Verification +
Testing

static

Debugging

Standards, Norms,
Experience

dynamic

The chain of error:
error à fault (error state) à failure (error effect)

With testing we trying to find failures and subsequently we
want to debug them by eliminating the fault.

31yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

Foundations of Testing
q Some fundamentals have been established over the last 50 years.

»Program testing can be used to show the presence of bugs,
but never to show their absence!«

Edsger W. Dijkstra, 1970

»Complete testing is not possible«
»Start as early as possible with testing«

q Testing is not a late phase of the development process, but should be
included as early as possible. The sooner errors are found, the lower the
costs.

The foundations of testing have been established over the
last 50 years, and still, it is a problem in practice. The
research is working on automated testing techniques.

32yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

Equivalence Class Partitioning
(Example 2/4)

q A program to calculate the factorial of n.
q A program that is to calculate the factorial of n must reject (1) negative numbers,

(2) real fractions, (3) numbers whose factorial is too large (n≥13), and (4)
syntactically incorrect inputs. Special case: 0!

natural number

other input

natural number
but too large

(≥13)

Refinement
negative number

non-integer

syntactical
incorrect

=0
natural number

<13

results in
6 classes

As a concrete way of identifying test cases, we look into the
equivalence class partitioning method. Step by step, the
partitions can be refined and improved. Finally, one chooses
representative values from each class to construct test cases.

33yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

Boundary Value Analysis
(Example 5/5)

natural number
but too large

(≥13)

negative number
non-integer

syntactical
incorrect

=0
natural number

<12

Class Input Expected Outcome
Negative number -5 Error message
Non-integer 3.14 Error message
Too large number 100 Error message
Syntactical Incorrect input “ABC” Error message
Normal/expected input 7 5040
Zero 0 1
Boundary Value 12 479001600
Boundary Value -1 11 39916800
Boundary Value +1 13 Error message

=12

boundaries

The boundary value analysis explores
the boundaries between the classes
because these corner cases are a typical
location for programming mistakes.

34yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

Unit Testing
“In this test, individual, manageable program program units are tested, depending on the
programming language, e.g., functions, subroutines or classes.”

Ludewig/Lichter, 2007

q Each component is tested individually, in isolation.
q Implemented software units are tested systematically.
q Error conditions can be clearly traced back to the source.
q Components can be interconnected, this is not considered in unit testing and

only the component in itself is tested.
q Unit tests are based on the component specification, the code and all related

documents.

Unit testing probes components in isolation.

35yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

Unit Testing in Java with JUnit
q JUnit is a unit testing framework for Java.
q It is now considered the standard for unit testing in Java.
q Originally developed by Kent Beck and Erich Gamma.
q Current version JUnit 5: http://junit.org/

Motto: „Keep the bar green to keep the code clean!“
Visualization by means of colored bar: if the test finds no errors, the bar
turns green; a red bar indicates errors.

Examples and project-related workflow will be shown in the Lab!

Unit testing of Java programs is
supported by the JUnit framework. It
usually is highly supported by IDEs,
which makes it easy to integrate unit
testing in the development process.

36yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

http://junit.org/

Test Driven Development (TDD)
q Refers to a style of software development that focuses on

testing.
q The three core tasks of coding, testing and design are carried

out in an interactive manner.
q The procedure described below maps the simple rules of Test-

Driven Development in an incremental/iterative process for the
implementation of one feature.

Based on Broy and Kuhrmann.
“Introduction to Software
Engineering” (Xpert.press), 2021.

Write/Modify
Test Case

Execute Test
Case

Implement/Modify
Code

Execute Test
Case

Clean Code
(Refactoring)

[test fails]

[test successful]
[finished]

[test
successful]

[at least one
failing test]

TDD is a common practice for
merging coding and testing. The
workflow on this slide shows the
basic steps to follow TDD for the
incremental implementation of
one feature.

37yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

Three Laws of TDD (by Kent Beck)

38yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 6 – Unit Testing

Rule 1:
You may not write production code until you have
written a failing unit test.

Rule 2:
You may not write more of a unit test than is sufficient
to fail, and not compiling is failing.

Rule 3:
You may not write more production code than is
sufficient to pass the currently failing test.

K. Beck. “Test Driven Development: By Example.” Addison-Wesley Longman, 2002.

TDD comes with simple rules that
should be followed. They set the
boundaries for what should be done
and what should *not* be done.

Testing – Best Practices (1/2)

q Test cases should be independent!
q The JUnit execution model executes test cases in arbitrary order (unless explicitly

defined).

q Use @Before.. Annotations to define test case preparations! Do not assume that
another test case already created some sort of test data or program state.

q Dependent test cases can cause flaky tests: sometimes they pass, sometimes they
fail, depending on the test execution order. General reasons for flaky tests:

q an issue with the test itself
q some external factor compromising the test results
q an issue with the newly-written code

August Shi, Wing Lam, Reed Oei, Tao Xie, and Darko Marinov. “IFixFlakies: a framework for automatically fixing order-dependent flaky tests”. In Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE), 2019.
Wing Lam, Reed Oei, August Shi, Darko Marinov and Tao Xie, "iDFlakies: A Framework for Detecting and Partially Classifying Flaky Tests”.12th IEEE Conference on
Software Testing, Validation and Verification (ICST), 2019.

A typical problem in practice are
flaky tests which can be caused
by dependent test cases.

39yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

Testing – Best Practices (2/2)

q One test case for one feature (à Single Responsibility for Tests).
Keep things simple!

q 5LOC Rule: Strive to write test cases 5LOC long.
q Choose meaningful test method names!
q Use same package structure as for source code.

à Test code is separate, but you can access methods with package accessibility

q Test cases should have the end user or defined requirements in mind.
q Peer review is important!

As for production code, test
code should follow established
best practices. Most of them are
concerned about readability.

40yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

(un)Testable Code (1/3)

Based on “Guide: Writing Testable Code” written by Google developers
http://misko.hevery.com/code-reviewers-guide/

Flaw #1 – Constructor does Real Work
“When your constructor has to instantiate and initialize its collaborators, the result
tends to be an inflexible and prematurely coupled design. Such constructors shut
off the ability to inject test collaborators when testing.”
q violates the Single Responsibility Principle
q testing directly is difficult

Another aspect is that the code itself
should support proper testability. We
discussed several scenarios and flaws
in code and how to improve it to enable
better testing.

41yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

http://misko.hevery.com/code-reviewers-guide/

Topics

42yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

❏ Requirements Elicitation – Analysis Techniques (Questions, Interviews, …)
❏ Requirements Modeling – GORE, Use Case, Activity Diagram, etc.
❏ Architecture: Architectural Drivers, Structures (Static + Dynamic), Architectural

Styles
❏ Module Design: Design Pattern, Design Principles
❏ Project Planning: Work Packages, Gantt-Charts, PERT, Milestone Trend Analysis
❏ Implementation: Clean Code
❏ Testing: Foundations + Equivalence Class Partitioning, JUnit, TDD, Testable Code,

Clean Tests, Code/Test Coverage, Static Analyzers (Checkstyle, Spotbugs, PMD)
❏ Debugging: TRAFFIC, Reducing the input (delta debugging), Reducing the

program (slicing), SBFL/SFL, Interactive Debugging
❏ Software Integration Strategies and Integration Testing

Debugging – From Error to Failures

The issue of debugging is to
q relate an observed failure to a fault/defect and
q to remove the defect such that the failure no

longer occurs.

Debugging Steps:
q Execution of tests!
q Fault Localization!
q Identify possible fixes.
q Choose the best fix.
q Implement the best fix!

After finding a bug, we also want to remove it,
which may be more difficult than it sounds.
Knowing the failure does not directly tell you
the actual fault. Debugging is mostly
concerned about finding the fault for the
observed failure.

43yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

Debugging – Difficulties
q Symptom and failure cause can be far apart.
q Symptoms of one error may be hidden by other errors.

q Fault masking: “An occurrence in which one defect prevents the detection of another
[IEEE 610]

q Symptoms of one error may disappear or change due to correction of another error.

„Debugging is one of the more
frustrating parts of programming. It
has elements of brain teasers,
coupled with the annoying
recognition that you have made a
mistake.“
B. Shneiderman: Software Psychology. Winthorp
Publishers, 1980.

Debugging can be frustrating but
also has its rewards when the bug is
finally eliminated.

44yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

TRAFFIC Principle
Debugging should follow the TRAFFIC principle:

q Track the problem

q Reproduce – Requires control over data and environment.

q Automate – Write a simple test case that exercises the problem.

q Find Origins – Where does the failure originate? Locate likely fault locations.

q Focus – Focus your effort on the most likely origin.

q Isolate – Isolate the fault (see scientific method of debugging, next slide).

q Correct – Fix the fault and verify that the failure no longer occurs.
Check for regression errors.

Debugging can be time consuming and
should be done systematically. TRAFFIC
presents such a systematic way on a high
level.

45yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

Debugging – Techniques
q Reduce the input: Delta Debugging

Simplifying and Isolating Failure-Inducing Input
q Reduce the program: Program Slicing

Isolating the relevant program statements/locations to focus debugging effort.
q Dynamic Slicing
q Static Forward and Backward Slicing
q Relevant Slicing

q Identify faulty statements: Statistical Fault Localization
Ranking suspicious program statements.

In the lecture and in the lab, we discussed
several concrete debugging techniques,
which are shown here on the slide. They
are concerned on either reducing the
input or with reducing the program.

46yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

Dynamic Slicing

b=2;
y=1;
If (a>1){

if (b>1){
x=2;

}
}
printf (“%d”, x);

1
2
3
4
5

6 Slicing
Criterion

Data
Dependence

Control
Dependence

q Slice backward from the erroneous
output of the program

q Dynamic slice includes the closure of
q Data dependencies and
q Control dependencies

For our test case with a=2, the
value of variable x printed in
line 6 is unexpected.

Dynamic slicing tries to shrink the
program to the set of instructions that
influence a specific value in the program
for a specific test input.

47yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

int x = read();
int z = 0;
int y = 0;
int i = 1;
while (i <= x) {
z = z + y;
y = y + 1;
i = i + 1;

}
printf(”%d”, z);

Input: 1
1
2
3
4
5
6
7
8

9

Slicing Criterion

Example based on lecture by
Michael Pradel (University of Stuttgart):
https://www.youtube.com/watch?v=flkYsAkc8rA

How do we calculate the data dependencies?

q Static dependency graph

q Dynamic dependency graph

1 2 3 4

5 6 7 8 9

Data dependencies

1 2 3 4

51 6 7 8

952

Control dependencies

Definition in 2 may
be used in 9.

Definition in 1
will be used in 52.

Definition in 6 will
be used in 9.

Dependency Graphs

The resulting dynamic slice depends on
the type of used dependency graph.

48yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

https://www.youtube.com/watch?v=flkYsAkc8rA

Forward Slice Backward Slice

Static Slicing (2/2)

What is affected by this
assignment?

What influenced the
value of this variable?

Static slicing is not concerned with any test
input and provides slices in two ways:
forward slice (what is affected) and
backward slice (what influenced the value).

49yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

b=1;
x=1;
If (a>1){

if (b>1){
x=2;

}
}
printf (“%d”, x);

1
2
3
4
5

6

input: a=2

Potential
Dependence Dynamic Data

Dependence

Potential Dependence (2/2)

Relevant Slice

Another interesting aspect is the
relevant slice, which also takes
into account the potential
dependencies in the program.

50yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

mid(){
int x,y,z,m; 3,3,5 1,2,3 3,2,1 5,5,5 5,3,4 2,1,3

read(“Enter 3 numbers:”, x,y,z); ● ● ● ● ● ●
m = z; ● ● ● ● ● ●
if(y < z) ● ● ● ● ● ●

if(x < y) ● ● ● ●
m = y; ●

else if (x< z) ● ● ●
m = y; // bug ● ●

else ● ●
if (x > y) ● ●

m = y; ●
else if (x > z) ●

m = x;
print(“Middle number is:”, m); ● ● ● ● ● ●

}
Pass Status P P P P P F

Test Cases

Visualizing Fault Localization (2/3)

Statistical Fault Localization
assigns suspiciousness scores
to statements (or another
spectrum level) based on their
occurrence in failing and passing
test cases.
The results can be highlighted in
the code to guide the developer
to potentially faulty statements.

51yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

Tool Support for Software Quality
Assurance

https://spotbugs.github.io
https://plugins.jetbrains.com/plugin/14014-spotbugs
https://plugins.jetbrains.com/plugin/3847-findbugs-idea

https://pmd.github.io
https://plugins.jetbrains.com/plugin/1137-pmdplugin

https://checkstyle.sourceforge.io
https://plugins.jetbrains.com/plugin/1065-checkstyle-idea

To complete the unit testing discussion, we
explored several static analyzers and their
integration into IDEs.

52yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

https://spotbugs.github.io/
https://plugins.jetbrains.com/plugin/14014-spotbugs
https://plugins.jetbrains.com/plugin/3847-findbugs-idea
https://pmd.github.io/
https://plugins.jetbrains.com/plugin/1137-pmdplugin
https://checkstyle.sourceforge.io/
https://plugins.jetbrains.com/plugin/1065-checkstyle-idea

Topics

53yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

❏ Requirements Elicitation – Analysis Techniques (Questions, Interviews, …)
❏ Requirements Modeling – GORE, Use Case, Activity Diagram, etc.
❏ Architecture: Architectural Drivers, Structures (Static + Dynamic), Architectural

Styles
❏ Module Design: Design Pattern, Design Principles
❏ Project Planning: Work Packages, Gantt-Charts, PERT, Milestone Trend Analysis
❏ Implementation: Clean Code
❏ Testing: Foundations + Equivalence Class Partitioning, JUnit, TDD, Testable Code,

Clean Tests, Code/Test Coverage, Static Analyzers (Checkstyle, Spotbugs, PMD)
❏ Debugging: TRAFFIC, Reducing the input (delta debugging), Reducing the

program (slicing), SBFL/SFL, Interactive Debugging
❏ Software Integration Strategies and Integration Testing

q Integration tests serve for the (syntactical and semantic)
evaluation of the interfaces.

q It is less concerned with the errors of the individual
components (unit testing) but with consistency problems
between the components.

q When everything is integrated, the system test can follow.

Testing in which software components, hardware
components, or both are combined and tested to
evaluate the interaction between them.

[IEEE Std 610.12 (1990)]

Integration Testing Integration is concerned with combining
several components to the overall system.
During this system, it can come to various
issues, mostly about consistency problems
between the components.

54yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

Bottom-Up Start point: component that is not
called.
Larger sub-systems are created step
by step.

No need for stubs. Needs test drivers for high-level
components.

Big Bang Everything is put together at once. § All errors at once
§ Difficult fault loalization
§ Time until integration is

wasted

Ad-Hoc Start point: components are
integrated as soon as they are ready.

No waiting times. Needs both, stubs and drivers.

Core Idea Pro Con

Top-Down Start point: Component that only
depends on others, but has no
incoming dependency.
Other components are replaced by
placeholders.

Little or no drivers
needed as high level
components are
used as test
environment.

§ Can be expensive
§ Low level components must

be replaced with stubs.

Overview: Integration Strategies

We discussed several different
integration strategies. We
also conducted several
exercises for planning
integration testing by creating
integration tables and
dependency graphs.

55yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

Summary: Testing Strategies
Criteria Unit Test

Testing Goal Identify faults in software
components that are tested in
isolation.

Testing Base à Component specification
à Detailed design
à Data model
à Source code

Typical Test
Subjects

Isolated source unit (class,
package, module)
à Components, programs
à Data transformation or

migration programs
à Database modules

Testing Tools IDE, Interactive Debugger, Static
Analyzer, Unit Testing
Frameworks like JUnit

Testing
Environment

Stubs, drivers, simulators

Source: German Testing Board

Integration Test

Identify faults in interfaces and in the
interaction between integrated
components.

à Software architecture
à Workflows
à Use cases

To be integrated individual
components, sub systems or
purchased standard
software/components/libraries
à Database implementation
à Infrastructure
à Interfaces
à System configuration and
configuration data

Test monitoring to observe interaction
(data exchange) of components

Reuse/extension of
placeholders/stubs, drivers and
simulators generated for unit testing.

System Test

Checking whether the specified
requirements (functional, non-
functional) are met by the product.

à Requirements specification
à Use cases
à Functional requirements
à Business processes
à Risk analysis report

à System and user
documentation/handbooks
à System configuration and
configuration data

Test management tools,
automated UI testing

Testing and production
environment should be mostly the
same.

Acceptance Test

Gain confidence in the system or in
certain non-functional properties.

à User requirements
à System requirements
à Use cases
à Business processes
à Risk analysis report

à Business processess of the
integrated system
à Production and maintenance
processes
à User procedures
à Forms
à Reports
à Configuration data

Testing and production
environment should be mostly the
same.

56yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

You can find a summary
of the major testing
strategies occurring in
software development.

Aspects of Version Control
Finally, we add here some additional material for your
own study about version control systems. We will
discuss some aspects in the lab.

57yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

Version Control (Overview)

❏ Reasons for version control of software:
❏ Parallel editing of software by multiple persons
❏ Change tracking
❏ Undo of changes
❏ Data backup of the source code

❏ Basic abilities of version control systems
1. Version and release identifier
2. Tracking of change history
3. Independent, parallel development + merging
4. Merge-Conflict handling
5. (Efficient) memory management (deltas)

❏ Usage model:
❏ check out à edit à check in

58yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

Having version control systems is standard
nowadays. They support the developers and take
care of the source code versioning and backup.

Configuration, Baseline, Release
❏ Configuration:

Set of software units that together form a functioning (sub)system.

❏ Baseline:
A stable configuration as reference point for further development.

❏ Release:
Baseline that is delivered to customer.

59yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

There are some basic terms, which should be
known: Configuration, baseline and release.

Version Control Systems

Type Description Example
Local Local archiving of (mostly single) files. SCCS, RCS

Central Revisions are located on central server. Clients request
updates, send changes.

CVS, SVN, Perforce, Visual SourceSafe

Distributed Distributed repositories (with all known revisions) that
can be synchronized.

Git, Mercurial, ClearCase

60yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

Version control systems come in different types. Historically the
centralized version control system was first, but also with the rise
of platforms like GitHub and GitLab, the distributed repositories are
becoming the current standard. For a more detailed comparison
you can check: https://www.perforce.com/blog/vcs/git-vs-svn-
what-difference

https://www.ibm.com/docs/en/aix/7.2?topic=concepts-source-code-control-system
https://www.gnu.org/software/rcs/
https://www.nongnu.org/cvs/
https://subversion.apache.org/
https://www.perforce.com/solutions/version-control
https://docs.microsoft.com/en-us/previous-versions/aspnet/ms178456(v=vs.100)
https://git-scm.com/
https://www.mercurial-scm.org/
https://www.ibm.com/products/rational-clearcase
https://github.com/
https://about.gitlab.com/
https://www.perforce.com/blog/vcs/git-vs-svn-what-difference

Git Commands

git clean -n Shows which files would be removed from working directory.
Use the -f flag in place of the -n flag to execute the clean.

Push the branch to <remote>, along with necessary commits and
objects. Creates named branch in the remote repo if it doesn’t exist.

git push
<remote> <branch>

git reset <file> Remove <file> from the staging area, but leave the working directory
unchanged. This unstages a file without overwriting any changes.

git pull <remote> Fetch the specified remote’s copy of current branch and
immediately merge it into the local copy.

git revert
<commit>

Create new commit that undoes all of the changes made in
<commit>, then apply it to the current branch.

git fetch
<remote> <branch>

Fetches a specific <branch>, from the repo. Leave off <branch>
to fetch all remote refs.

git remote add
<name> <url>

Create a new connection to a remote repo. After adding a remote,
you can use <name> as a shortcut for <url> in other commands.

git diff Show unstaged changes between your index and
working directory.

git commit -m
"<message>"

Commit the staged snapshot, but instead of launching
a text editor, use <message> as the commit message.

UNDOING CHANGES

git status List which files are staged, unstaged, and untracked.

REMOTE REPOSITORIES

git log Display the entire commit history using the default format.
For customization see additional options.

git branch List all of the branches in your repo. Add a <branch> argument to
create a new branch with the name <branch>.

git checkout -b
<branch>

Create and check out a new branch named <branch>.
Drop the -b flag to checkout an existing branch.

git merge <branch> Merge <branch> into the current branch.

git add
<directory>

Stage all changes in <directory> for the next commit.
Replace <directory> with a <file> to change a specific file.

git clone <repo>

git config
user.name <name>

GIT BRANCHES

Define author name to be used for all commits in current repo. Devs
commonly use --global flag to set config options for current user.

git rebase <base>

git reflog Show a log of changes to the local repository’s HEAD.
Add --relative-date flag to show date info or --all to show all refs.

Clone repo located at <repo> onto local machine. Original repo can be
located on the local filesystem or on a remote machine via HTTP or SSH.

git init
<directory>

Create empty Git repo in specified directory. Run with no
arguments to initialize the current directory as a git repository.

git commit
--amend

Replace the last commit with the staged changes and last commit
combined. Use with nothing staged to edit the last commit’s message.

Rebase the current branch onto <base>. <base> can be a commit ID,
branch name, a tag, or a relative reference to HEAD.

GIT BASICS REWRITING GIT HISTORY

Git Cheat Sheet

Visit atlassian.com/git for more information, training, and tutorials

https://wac-cdn.atlassian.com/dam/jcr:e7e22f25-
bba2-4ef1-a197-53f46b6df4a5/SWTM-
2088_Atlassian-Git-Cheatsheet.pdf?cdnVersion=296

❏ knowing the git commands
like pull, push, commit,
status is essential

❏ you need to know your tools
❏ having a cheat sheet

becomes handy

61yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

We also use Git for the projects in this course, and you probably have searched online for
some of its commands. Knowing the basics like git pull, push, commit, and status is
essential, but for the more sophisticated (sequence of) commands a cheat sheet becomes
handy. As a software engineer it necessary to know your toolset; it should not only include
programming (languages) but also other (DevOps) tools like Git.

https://wac-cdn.atlassian.com/dam/jcr:e7e22f25-bba2-4ef1-a197-53f46b6df4a5/SWTM-2088_Atlassian-Git-Cheatsheet.pdf?cdnVersion=296

Merging vs. Rebasing

Illustrations are taken from https://www.atlassian.com/git/tutorials/merging-vs-rebasing

How to combine?

git merge

git rebase

clean, linear history free of
unnecessary merge commits

preserve the complete history of
your project and avoid the risk of
re-writing public commits

62yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

git pull --rebase can become handy to avoid
unnecessary merge commits. The default for git pull is to
use the merge concept.

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

The Golden Rule of Rebasing

Illustration taken from https://www.atlassian.com/git/tutorials/merging-vs-rebasing

“The golden rule of git rebase is to never use it on
public branches.”

q Git will think that your main branch’s
history has diverged from everybody else’s.

q Both main branches would need to be
merged, resulting in an extra merge
commit and two sets of commits that
contain the same changes (the original
ones, and the ones from your rebased
branch).

Better: First stash your changes, pull
the latest main branch, apply your
stash, and then push your changes.

63yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

However, rebase might not
always be the best choice!
Knowing the difference to
merge is important! You need
to adjust your practices to the
organization rules.

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

git squash
❏ rewrite your commit history
❏ this action helps to clean up and simplify

your commit history before sharing your
work with team members

https://www.gitkraken.com/learn/git/git-squash

64yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

Especially when you work on a feature branch, it may be useful to use
git squash to clean up and simplify the commits history! Do not spoil
the history with tiny commit sequences that actually belong together.

https://www.gitkraken.com/learn/git/git-squash

Next Week – Week 13:
• Wednesday à Presentations
• Thursday à No labs anymore

Conclusion
❏ Software Engineering is more than programming…
❏ Good luck with the final submissions and the final exam!

Please support our
research and participate in
our survey!

https://forms.office.com
/r/DknsSTwVsP

65yannic@comp.nus.edu.sg CS3213 FSE (Project-Part) – Week 12 – Summary

https://forms.office.com/r/DknsSTwVsP

