
MODELING NOTATIONS

CS3213 FSE

Prof. Abhik Roychoudhury

National University of Singapore

CS3213 FSE course by Abhik Roychoudhury 1

CS3213 FSE course by Abhik Roychoudhury 2

CodeTests Coverage

Testing

Debug
Abstract model

Desirable
properties

Verify

Programmer

SOFTWARE ENGINEERING

CS3213 FSE course by Abhik Roychoudhury 3

Requirements (English)

Modeling language for a tool
(stands for FSM)

Code

Tests
Testing

Debug

Alternate models??
Sequence Diag.

??

More automated

Manual step
Manual step

Desirable
Properties

User

Verification

RECOMMENDED FLOW

• We first clarify the following terms

• System Architecture: Inter-connection among the system

components.

• System behavior: How the components change state, by

communicating among themselves.

• System Design Model = Architecture + Behavior

• We focus more on behavior, and checking of behavior.

CS3213 FSE course by Abhik Roychoudhury 4

SYSTEM DESIGN MODEL

• Provides structure as well as behavior for the system
components.

• Complete

• Complete description of system behavior.

• Based on well-established modeling notations.

• We use UML.

• Preferably executable

• Can simulate the model, and get a feel for how the constructed
system will behave!

CS3213 FSE course by Abhik Roychoudhury 5

CRITERIA FOR DESIGN MODEL

• So Far

• What is a Model?

• ATC – Running Example

• Informal Req. at a lab scale.

• Now, how to model/validate such requirements

• Modeling Notations

• Finite State Machines

CS3213 FSE course by Abhik Roychoudhury 6

ORGANIZATION OF SLIDES

CS3213 FSE course by Abhik Roychoudhury

7

Informal System Requirements (in English)

Sample Scenarios (as MSCs)

MSC-based System Model (say HMSC)

Local FSMs for the processes in the system

System Implementation

Relatively easy

Hard manual step

Relatively easy, but manual

Hard to automate due to implied scenarios

Test Spec.

Automated

Automatically

generate tests

Generating test spec. in the absence of a

MSC-based system model

Test Suite

Refer back

test results

• M = (S, I, →)

• S is a finite set of states

• I S is the set of initial states

• → S S is the transition relation.

CS3213 FSE course by Abhik Roychoudhury 8

s0

s1
s2

S = {s0, s1, s2}

I = {s0}

→ = {(s0,s1), (s1,s2), (s2,s2), (s2,s0)}

FINITE STATE MACHINES

• … using FSMs

• Unit step: How much computation does a single transition

denote?

• Hierarchy: How to visualize a FSM model at different levels of

details?

• Concurrency: How to compose the behaviors of concurrently

running subsystems (of a large sys.)

• Each subsystem is modeled as an FSM!

CS3213 FSE course by Abhik Roychoudhury 9

ISSUES IN SYSTEM MODELING

• For hardware systems

• A single clock cycle

• For software systems

• Atomic execution of a “minimal” block of code

• A statement or an instruction?

• Depends on the level at which the software system is being

modeled as an FSM !

CS3213 FSE course by Abhik Roychoudhury 10

WHAT IS IN A STEP?

• 1 v = 0;

• 2 v++;

• 3 …

◦ What are the states ?

 (value of pc, value of v)

◦ How many initial states are there ?

 No info, depends on the type of v

• Draw the states and transitions corresponding to this program.

CS3213 FSE course by Abhik Roychoudhury 11

EXAMPLE

CS3213 FSE course by Abhik Roychoudhury 12

Pc=1,v=0

Pc=2, v= 0

Pc = 3, v = 1
…..

v = 0

v++

Pc=1,v=1 Pc=1,v=2 …

EXAMPLE

Choice of steps at different levels of details also promotes hierarchical modeling.

CS3213 FSE course by Abhik Roychoudhury

13

on off

dim bright

stable flashing

HIERARCHY

• M1 = (S1, I1, →1) M2 = (S2, I2, →2)

• Define

• M1 M2 = (S1S2, I1I2, →)

• Where (s1,s2) → (t1, t2) provided

• s1 S1, t1 S1,

• s2 S2, t2 S2,

• (s1 →1 t1) OR (s2 →2 t2)

• Defines control flow of the composed FSM as an arbitrary interleaving of
flows from components.

• Interleaving of independent flows, what about comm.?

CS3213 FSE course by Abhik Roychoudhury 14

CONCURRENT COMPOSITION

Basic FSM

• M = (S, I, →)

• S is a finite set of states

• I S is the set of initial states

• → S S is the transition
relation.

Communicating FSM

• M = (S, I, , →)

• S is a finite set of states

• I S is the set of initial states

• is the set of action names that
it takes part in

• → S S is the transition
relation.

Communication across FSMs via
action names.

CS3213 FSE course by Abhik Roychoudhury 15

COMMUNICATING FSM

• M1 = (S1, I1, 1 , →1) M2 = (S2, I2, 2 , →2)

• Define

• M1 M2 = (S1S2, I1I2, 1 2 , →)

• And (s1,s2) (t1,t2) provided

• s1 S1, t1 S1, and

• s2 S2, t2 S2, and

• If a 1 2 we have (s1 t1) and (s2 t2)

• If a 1 - 2 we have (s1 t1)

• If a 2 - 1 we have (s2 t2)

CS3213 FSE course by Abhik Roychoudhury 16

→
a

→
a

→
a

→a

→a

COMPOSITION OF
COMMUNICATING FSM

CS3213 FSE course by Abhik Roychoudhury 17

idle busy idle busy

a1
data data

ack

b1

ack

Component FSMs

idle, idle

idle, busy busy, idle

busy, busy

EXAMPLE

CS3213 FSE course by Abhik Roychoudhury 18

idle busy idle busy

a1
data data

ack

b1

ack

Component FSMs

data ack

a1

idle, idle

busy, busy

b1

CS3213 FSE course by Abhik Roychoudhury
19

idle busy idle busy

a1
!data(5) ?data(X)

?ack

b1

!ack

data

[X = 5]
ack

a1

idle, idle

busy, busy

b1

Sender Process Receiver Process

DATA COMMUNICATION

• FSMs denote an intra-component style of modeling

• Given a large system – identify its components

• Model each component as FSM – M1, M2, M3

• Overall system modeled as concurrent composition

• M1 || M2 || M3

• Alternate style of modeling

• Inter-component style

• Emphasize communication over computation.

• Sequence Diagrams are basic snippets for describing communication.

CS3213 FSE course by Abhik Roychoudhury 20

FSM – WRAP UP

Prof. Abhik Roychoudhury

National University of Singapore

21

SEQUENCE DIAGRAMS

• MSC = Message Sequence Chart

• Labeled partial order of events

• Highlights inter-process communications

• While, FSMs highlight intra-process control flow.

CS3213 FSE course by Abhik Roychoudhury 22

m1

m2

p q

MSC BASED MODELS

• How is the partial order constructed

- Time flows from top to bottom along each vertical line.

- e1 < e3 and e2 < e4

- Each message receive must occur after the corresponding send.

- e1 < e2 and e3 < e4

- Apply these rules over and over again to find out which event takes place before which other event.

- e1 < e2, e2 < e4, e1 < e2, e3 < e4, e1 < e4

CS3213 FSE course by Abhik Roychoudhury 23

m1

m2

p q

e1 e2

e3 e4

Cannot deduce e2 < e3 or e3 < e2

Incomparable events

MSC PARTIAL ORDER

• Describe sample scenarios of system interaction

• Appears in requirement documents

• Do not describe “complete” system behavior

CS3213 FSE course by Abhik Roychoudhury 24

ATC WCP

connect

setStatus_1

disable

Client

status = 1

update

Sample MSC from ATC example

Exercise: Find two incomparable

events in this MSC

TYPICAL USE OF MSC

CS3213 FSE course by Abhik Roychoudhury 25

M1

M2

M3

Connect MSCs into a graph – Message Sequence Graph (MSG)

Each node of the graph is a MSC.

Need to define the meaning of concatenation of MSCs

MSC BASED SYSTEM MODEL

CS3213 FSE course by Abhik Roychoudhury
26

Interface ResourceUser

request

deny

no

InterfaceUser

request

grant

yes

Resource

Chart M2
Chart M3

InterfaceUser

request

Resource

Chart M1

M1

M2

M3

CS3213 FSE course by Abhik Roychoudhury

27

Interface ResourceUser

request

deny

no

request

grant

yes

Chart M2

Chart M3

Synchronous: All events in M2

All events in M3

Asynchronous: All events in

process p of M2 All events in

process p of M3

Interface and Resource

processes can finish M3

while User process is still in

M2 – provided asynchronous

concatenation is considered.

MSC CONCATENATION

• Complete

• Complete description of system behavior.

• MSG achieves this criterion.

• Based on well-established modeling notations.

• We use UML Sequence Diagrams, which is OK.

• Preferably executable

• Can simulate the model, and get a feel for how the constructed
system will behave!

• Global simulation of MSG is possible.

• But not per-process execution !!

CS3213 FSE course by Abhik Roychoudhury 28

MSC-BASED DESIGN MODEL

• So, far we have studied 2 notational styles

• Intra-process style FSM modeling notations

• Inter-process style MSC-based modeling notation.

• In actual system modeling from English requirements

• How do they fit together?

• What roles do they play?

• Are they both used in parallel?

CS3213 FSE course by Abhik Roychoudhury 29

PUTTING NOTATIONS
TOGETHER

CS3213 FSE course by Abhik Roychoudhury
30

Informal System Requirements (in English)

Sample Scenarios (as MSCs)

MSC-based System Model (say HMSC)

Local FSMs for the processes in the system

System Implementation

Relatively easy

Hard manual step

Relatively easy, but manual

Hard to automate due to implied scenarios

Test Spec.

Automated

Automatically

generate tests

Generating test spec. in the absence of a

MSC-based system model

Test Suite

Refer back

test results

Prof. Abhik Roychoudhury

National University of Singapore

31

MODEL SIMULATIONS
CS3213 FSE

• So Far

• What is a Model?

• ATC – Running Example

• Informal Req. at a lab scale.

• Has subtle deadlock error (see textbook chap 2.3)

• How to model such requirements

• Modeling Notations

• Finite State Machines

• MSC based models

• Now, how to validate the models

• Simulations of FSM models, MSC-based models.

CS3213 FSE course by Abhik Roychoudhury 32

ORGANIZATION OF SLIDES

CS3213 FSE course by Abhik Roychoudhury 33

write() /

BC->req()

accept() /

BC->addr_data()

deny()/ BC->req()

req() / P->deny()

req() / P-> accept()addr_data()

Processor P Bus Controller BC

wait

try

idle

busy

Processor and Bus Controller – what does the example do?

EXAMPLE: STATE DIAGRAM

CS3213 FSE course by Abhik Roychoudhury 34

write
P BC

write
P BC

req

deny

req

accept

addr_datareq
…

Sample scenarios of the State Diagram shown in the previous slide.

Super-step:

On encountering a write, the sequence of method calls executed is

write, req, (deny, req)*, accept, addr_data

How?

POSSIBLE BEHAVIOR

CS3213 FSE course by Abhik Roychoudhury 35

write() /

BC->req()

accept() /

BC->addr_data()

deny()/ BC->req()

req() / P->deny()

req() / P-> accept()addr_data()

Processor P Bus Controller BC

wait

try

idle

busy

req(), deny(), req(), accept(), addr_data()

SIMULATION: STATE DIAGRAM

• So far

• FSMs and State Diagrams – Intra component style modeling

• MSCs and MSGs - Inter component style modeling

• Simulation of FSMs and State Diagrams

• How to simulate MSCs?

• Generate a trace of events which satisfies the partial order denoted by a

given MSC.

• Always maintain a ``cut’’ to denote the progress in each process – while

simulating a given MSC.

• The whole question now is how to advance a cut.

• Let us look at this matter visually!

CS3213 FSE course by Abhik Roychoudhury 36

MODEL SIMULATION

CS3213 FSE course by Abhik Roychoudhury 37

ATC WCP

connect

setStatus_1

disable

Client

status = 1

update

Cut

Shows progress of the individual

processes / components: ATC, WCP, Client

SIMULATING MSC

CS3213 FSE course by Abhik Roychoudhury 38

ATC WCP

connect

setStatus_1

disable

Client

status = 1

update

ATC WCP

connect

setStatus_1

disable

Client

update

ATC WCP

connect

setStatus_1

disable

Client

update

 For a sequence of MSCs --- M1, M2
 Synchronous concatenation: All events in M1 All events in

M2

 Asynchronous concatenation: All events in process p of M1
All events in process p of M2

 For any msg. m sent from process p to process q
 Synchronous message passing: Send and receive happens in the

form of a hand-shake.

 Asynchronous message passing: Sender sends message which
is stored in a queue, picked up by receiver later.

 Simulating a sequence of MSCs will need to follow the
concatenation & message passing semantics.

CS3213 FSE course by Abhik Roychoudhury 39

RECAP: MSC SEMANTICS

CS3213 FSE course by Abhik Roychoudhury 40

Interface ResourceUser

request

deny

no

request

grant

yes

Chart M2

Chart M3

request
Chart M1

Allowed for asynchronous

concatenation.

Not allowed for synchronous

concatenation.

SIMULATING MSC SEQUENCE

CS3213 FSE course by Abhik Roychoudhury 41

ReceiverSender

data

p q r s

m m

Simulation requires unbounded memory

under asynchronous concatenation and

asynchronous message passing

Simulation requires unbounded memory

under asynchronous concatenation and

synchronous / asynchronous message

passing.

UNBOUNDED MEMORY?

• Software Engineering

• Requirements -> Modeling -> Coding -> Testing

• Requirements: Elicitation and Representation, Checking without a single LoC

• Modeling: UML Notations, and variants, Architecture modeling

• Coding: Major part of the module and the project, Repair.

• Testing: Validation concepts, Debugging.

42

CS3213 FSE COURSE AT A
GLANCE

