MODELING NOTATIONS CS3213 FSE

Prof. Abhik Roychoudhury

National University of Singapore

CS3213 FSE course by Abhik Roychoudhury

SYSTEM DESIGN MODEL

- We first clarify the following terms
 - System Architecture: Inter-connection among the system components.
 - System behavior: How the components change state, by communicating among themselves.
- System Design Model = Architecture + Behavior
 - We focus more on behavior, and checking of behavior.

CRITERIA FOR DESIGN MODEL

- Provides structure as well as behavior for the system components.
- Complete
 - Complete description of system behavior.
- Based on well-established modeling notations.
 - We use UML.
- Preferably executable
 - Can simulate the model, and get a feel for how the constructed system will behave!

ORGANIZATION OF SLIDES

- So Far
 - What is a Model?
 - ATC Running Example
 - Informal Req. at a lab scale.
- Now, how to model/validate such requirements
 - Modeling Notations
 - Finite State Machines

CS3213 FSE course by Abhik Roychoudhury

FINITE STATE MACHINES

- $M = (S, I, \rightarrow)$
 - S is a finite set of states
 - $I \subseteq S$ is the set of initial states
 - $\rightarrow \subseteq S \times S$ is the transition relation.

$$S = \{s0, s1, s2\}$$

$$I = \{s0\}$$

$$\rightarrow = \{(s0, s1), (s1, s2), (s2, s2), (s2, s0)\}$$

ISSUES IN SYSTEM MODELING

- ... using FSMs
 - Unit step: How much computation does a single transition denote?
 - Hierarchy: How to visualize a FSM model at different levels of details?
 - Concurrency: How to compose the behaviors of concurrently running subsystems (of a large sys.)
 - Each subsystem is modeled as an FSM!

WHAT IS IN A STEP?

- For hardware systems
 - A single clock cycle
- For software systems
 - Atomic execution of a "minimal" block of code
 - A statement or an instruction?
 - Depends on the level at which the software system is being modeled as an FSM !

EXAMPLE

- I v = 0;
- 2 v++;
- 3 ...
 - What are the states ?
 - (value of pc, value of v)
 - How many initial states are there ?
 - No info, depends on the type of v
- Draw the states and transitions corresponding to this program.

HIERARCHY

Choice of steps at different levels of details also promotes hierarchical modeling.

CONCURRENT COMPOSITION

- $MI = (SI, II, \rightarrow_1)$ $M2 = (S2, I2, \rightarrow_2)$
- Define
 - $MI \times M2 = (SI \times S2, II \times I2, \rightarrow)$
 - Where $(sl,s2) \rightarrow (tl,t2)$ provided
 - $sI \in SI, tI \in SI$,
 - $s2 \in S2, t2 \in S2$,
 - $(sI \rightarrow_1 tI)$ OR $(s2 \rightarrow_2 t2)$
 - Defines control flow of the composed FSM as an arbitrary interleaving of flows from components.
 - Interleaving of independent flows, what about comm.?

COMMUNICATING FSM

Basic FSM

- $M = (S, I, \rightarrow)$
 - S is a finite set of states
 - * $\ensuremath{\mathsf{I}} \subseteq \mathsf{S}$ is the set of initial states
 - $\rightarrow \subseteq S \times S$ is the transition relation.

Communicating FSM

- $M = (S, I, \Sigma, \rightarrow)$
 - S is a finite set of states
 - $I \subseteq S$ is the set of initial states
 - $\boldsymbol{\Sigma}$ is the set of action names that it takes part in
 - $\rightarrow \subseteq S \times \Sigma \times S$ is the transition relation.

Communication across FSMs via action names.

COMPOSITION OF COMMUNICATING FSM

•
$$MI = (SI, II, \sum_{i}, \rightarrow_{i})$$
 $M2 = (S2, I2, \sum_{2}, \rightarrow_{2})$

Define

• M1 × M2 =
$$(S1 \times S2, 11 \times 12, \Sigma_1 \cup \Sigma_2, \rightarrow)$$

• And $(s1,s2) \rightarrow (t1,t2)$ provided

• sl
$$\in$$
 Sl,tl \in Sl, and

•
$$s2 \in S2, t2 \in S2, and$$

• If
$$a \in \sum_{1} \cap \sum_{2}$$
 we have $(sl \xrightarrow{a} tl)$ and $(s2 \xrightarrow{a} t2)$

• If
$$a \in \sum_{l} - \sum_{2}$$
 we have $(sl \xrightarrow{a} tl)$

• If
$$a \in \sum_2 - \sum_1$$
 we have $(s2 \xrightarrow{a} t2)$

CS3213 FSE course by Abhik Roychoudhury

FSM – WRAP UP

- FSMs denote an intra-component style of modeling
 - Given a large system identify its components
 - Model each component as FSM MI, M2, M3
 - Overall system modeled as concurrent composition
 - MI || M2 || M3
- Alternate style of modeling
 - Inter-component style
 - Emphasize communication over computation.
 - Sequence Diagrams are basic snippets for describing communication.

SEQUENCE DIAGRAMS

Prof. Abhik Roychoudhury National University of Singapore

MSC BASED MODELS

- MSC = Message Sequence Chart
- Labeled partial order of events
 - Highlights inter-process communications
 - While, FSMs highlight intra-process control flow.

MSC PARTIAL ORDER

- How is the partial order constructed
 - Time flows from top to bottom along each vertical line.
 - eI < e3 and e2 < e4
 - Each message receive must occur after the corresponding send.
 - eI < e2 and e3 < e4
 - Apply these rules over and over again to find out which event takes place before which other event.
 - el < e2, e2 < e4, el < e2, e3 < e4, el < e4

Cannot deduce $e^2 < e^3$ or $e^3 < e^2$

Incomparable events

CS3213 FSE course by Abhik Roychoudhury

TYPICAL USE OF MSC

- Describe sample scenarios of system interaction
 - Appears in requirement documents
 - Do not describe "complete" system behavior

Sample MSC from ATC example

Exercise: Find two incomparable events in this MSC

MSC BASED SYSTEM MODEL

Connect MSCs into a graph – Message Sequence Graph (MSG) Each node of the graph is a MSC. Need to define the meaning of concatenation of MSCs

CS3213 FSE course by Abhik Roychoudhury

CS3213 FSE course by Abhik Roychoudhury

MSC-BASED DESIGN MODEL

- Complete
 - Complete description of system behavior.
 - MSG achieves this criterion.
- Based on well-established modeling notations.
 - We use UML Sequence Diagrams, which is OK.
- Preferably executable
 - Can simulate the model, and get a feel for how the constructed system will behave!
 - Global simulation of MSG is possible.
 - But not per-process execution !!

PUTTING NOTATIONS TOGETHER

- So, far we have studied 2 notational styles
 - Intra-process style FSM modeling notations
 - Inter-process style MSC-based modeling notation.
- In actual system modeling from English requirements
 - How do they fit together?
 - What roles do they play?
 - Are they both used in parallel?

MODEL SIMULATIONS CS3213 FSE

Prof. Abhik Roychoudhury National University of Singapore

ORGANIZATION OF SLIDES

- So Far
 - What is a Model?
 - ATC Running Example
 - Informal Req. at a lab scale.
 - Has subtle deadlock error (see textbook chap 2.3)
 - How to model such requirements
 - Modeling Notations
 - Finite State Machines
 - MSC based models
- Now, how to validate the models
 - Simulations of FSM models, MSC-based models.

EXAMPLE: STATE DIAGRAM

Processor and Bus Controller – what does the example do?

Sample scenarios of the State Diagram shown in the previous slide.

Super-step:

On encountering a write, the sequence of method calls executed is write, req, (deny, req)*, accept, addr_data

How?

req(), deny(), req(), accept(), addr_data()

MODEL SIMULATION

- So far
 - FSMs and State Diagrams Intra component style modeling
 - MSCs and MSGs Inter component style modeling
 - Simulation of FSMs and State Diagrams
- How to simulate MSCs?
 - Generate a trace of events which satisfies the partial order denoted by a given MSC.
 - Always maintain a ``cut'' to denote the progress in each process while simulating a given MSC.
 - The whole question now is how to advance a cut.
 - Let us look at this matter visually!

RECAP: MSC SEMANTICS

- For a sequence of MSCs --- MI, M2
 - Synchronous concatenation: All events in $MI \leq All$ events in M2
 - Asynchronous concatenation: All events in process p of M1 ≤ All events in process p of M2
- For any msg. m sent from process p to process q
 - **Synchronous message passing**: Send and receive happens in the form of a hand-shake.
 - Asynchronous message passing: Sender sends message which is stored in a queue, picked up by receiver later.
- Simulating a sequence of MSCs will need to follow the concatenation & message passing semantics.

Simulation requires unbounded memory under asynchronous concatenation and asynchronous message passing Simulation requires unbounded memory under asynchronous concatenation and synchronous / asynchronous message passing.

CS3213 FSE COURSE AT A GLANCE

- Software Engineering
 - Requirements -> Modeling -> Coding -> Testing

- Requirements: Elicitation and Representation, Checking without a single LoC
- Modeling: UML Notations, and variants, Architecture modeling
- Coding: Major part of the module and the project, Repair.
- Testing: Validation concepts, Debugging.