
INTELLIGENT TUTORING

CS3213 FSE

Prof. Abhik Roychoudhury

National University of Singapore

CS3213 FSE course by Abhik Roychoudhury 1

WHAT WE DID EARLIER

2

Requirements and Modeling

◦ System Requirements: Use-cases, Scenarios, Sequence Diagrams

◦ System structure: Class diagrams

◦ Discussion on semantics

◦ System behavior: State diagrams

◦ Today

◦ Discussion on the thinking behind your course project

INTELLIGENT TUTORING

Prof. Abhik Roychoudhury

National University of Singapore

CS3213 FSE course by Abhik Roychoudhury 3

ONLINE TEACHING

4

Lack of personalized feedback?

GOALS OF INTELLIGENT TUTOR

5

Solution Generation
• Generate complete solution of a given problem. Useful for

• Completing student’s incorrect attempt

• Generate partial hints to guide towards next step

• Possible automated grading.

Similar Problem Generation
• Given a problem, search for other problems having similar solution

• Useful for generating example problems

Parameterized Problem Generation
• Create new problems satisfying given solution characteristics.

• Useful for generating plagiarism free assignment problems

MOTIVATING EXAMPLE

def search(x, seq):

for i in range(len(seq)):

if x <= seq[i]:

return i

return len(seq)

Reference Solution

Problem Statement: write a Python program to

count the number of elements smaller than x in a

sorted sequence seq.

6

Input Output

search(2, [1,2,3]) 1

search(3, [4,5,6]) 0

Sample Test Cases

MOTIVATING
EXAMPLE

Incorrect Student Program

def search(x, seq):

if seq == () or seq == []:

return 0

elif x > seq[-1]:

return len(seq)

else:

for num in range(len(seq)):

if x > seq[num]:

continue

elif x < seq[num]:

return num

return 0

Consider grading the following student program.

Human TA

Deduct grades due to:

• Fail to pass all test

cases.

e.g., search(2, [1,2,3])

• Far different from the

reference solution.

Understanding student

programs is usually time-

consuming.

7

MOTIVATING EXAMPLE

Incorrect Student Program

def search(x, seq):

if seq == () or seq == []:

return 0

elif x > seq[-1]:

return len(seq)

else:

for num in range(len(seq)):

if x > seq[num]:

continue

elif x < seq[num]: # fix: <=

return num

return 0

In fact, only one operator is wrong.

8

REPAIR-BASED FEEDBACK
GENERATION

• Envision the feedback generation problem as an Automated Program Repair (APR)

problem.

Repair

Engine

Correctness

Specification

(provided by

tutors)

Incorrect

Student

Program

Patch

Hint

s

Patch Grade

s

…

Feedback

9

HINT GENERATION

10

RUNNING EXAMPLE

11

STEP 1: REFACTORING

12

CONTROL FLOW GRAPH

13

x = 1; y = 0; z = 0;

while (x < 10){

if (x > 5)

y = y + x;

else z = z + x;

x = x + 1;

}

printf(…);

x =1; y = 0; z = 0;

x < 10

x > 5

y = y +x z = z + x

Y N

x = x +1
printf(…)

Y N

Nodes of the graph, basic blocks, are maximal code fragments executed without control

transfer. The edges denote control transfer.

STEP 2: VARIABLE MAPPING

14

● Dynamic equivalence analysis (trace based)

● Followed by define/use analysis (block based)

{x ⇔ e, seq ⇔ lst, i ⇔ j}

Approach

Refactored correct program

def search(x, seq):

for i in range(len(seq)):

if x <= seq[i]:

return i

else:

pass

return len(seq)

def search(e, lst):

for j in range(len(lst)):

if e < lst[j]:

return j

else:

j = j + 1

return len(lst) + 1

Incorrect student program

Block Mapping
15

BLOCK MAPPING

STEP 3: INFER SPECIFICATION

16

4. PATCH SYNTHESIS

17

e <= lst[j]Final Block Patch

Block Patch
Validation

e <= lst[j]
e == lst[j]
e >= lst[j]

...

j < lst[j]
e < lst[e]
j < lst[e]

...

e <= lst[j]

...

e < lst[j] //Buggy-Block

Operator
Mutation

Variable
Mutation

x <= seq[i] //Correct-Block

v1 <= v2[v3]

Expression
Template

18

AUTOMATED PROGRAM
REPAIR - BACKGROUND

Prof. Abhik Roychoudhury

National University of Singapore

CS3213 FSE course by Abhik Roychoudhury 19

FIXING BUGS: HOW BAD IS IT?

20

90% of cost and resources in software project

Legacy Crisis!

SOLUTION:

PAY STRANGERS - NO!!

21

Solution: Automate

AUTOMATED PROGRAM REPAIR

• Weak description of intended behavior / correctness criterion e.g. tests

• Weak applicability of repair techniques e.g. only overflow errors

• Large search space of candidate patches for general-purpose repair tools.

• Patch suggestions and Interactive Repair

22

DIVISION OF LABOR

Syntactic Program Repair

1. Where to fix, which line?

2. Generate patches in the candidate line

3. Validate the candidate patches against

correctness criterion.

Semantic Program Repair

1. Where to fix, which line(s)?

2. What values should be returned by

those lines, e.g. <inp ==1, ret== 0>

3. What are the expressions which will

return such values?

23

GENPROG – REPAIR VIA SEARCH (ACK:
CLAIRE LE GOUES , 6 SLIDES)

24

Repaire

d

Buggy

mutat

e

Gen

1
Gen 2 Gen

N

INPUT

OUTPUT

EVALUATE FITNESS

DISCARD

ACCEPT

MUTATE

25

• An individual is a candidate patch or set of changes

to the input program.

• A patch is a series of statement-level edits:

• delete X

• replace X with Y

• insert Y after X.

• Replace/insert: pick Y from somewhere else in

the program.

26

CANDIDATE PATCH

27

1 void gcd(int a, int b) {

2 if (a == 0) {

3 printf(“%d”, b);

4 }

5 while (b > 0) {

6 if (a > b)

7 a = a – b;

8 else

9 b = b – a;

10 }

11 printf(“%d”, a);

12 return;

13 }

> gcd(4,2)

> 2

>

> gcd(1071,1029)

> 21

>

> gcd(0,55)

> 55

(looping forever)

PROGRAM REPRESENTATION

28

29

30

An edit is:

• Insert statement X

after statement Y

• Replace statement X

with statement Y

• Delete statement X

OVER-FITTING IN REPAIR

31

Avoid generating programs like

if (input1) return output1

else if (input2) return output2

else if (input3) return output3

….

Vulnerable

program

Tests

Repaired

Program

Repair

System

ARTIFACTS

(symbolic

formulae)

Generalize beyond the provided tests using symbolic

reasoning.

COMPARISON

Syntactic Program Repair

1. Where to fix, which line?

2. Generate patches in the candidate line

3. Validate the candidate patches against

correctness criterion.

Semantic Program Repair

1. Where to fix, which line(s)?

2. What values should be returned by

those lines, e.g. <inp ==1, ret== 0>

3. What are the expressions which will

return such values?

32

Syntax-based Schematic

for e in Search-space{

Validate e against Tests

}

Semantics-based Schematic

for t in Tests {

generate repair constraint Ψt

}

Synthesize e from ∧tΨt

STATE-OF-THE-ART

33

Ack: Figure from Reading in our class, “Automated Program Repair” by Le Goues,

Pradel, Roychoudhury, article in Communications of the ACM, 2019.

34

1 int triangle(int a, int b, int c){

2 if (a <= 0 || b <= 0 || c <= 0)

3 return INVALID;

4 if (a == b && b == c)

5 return EQUILATERAL;

6 if (a == b || b != c) // bug!

7 return ISOSCELES;

8 return SCALENE;

9 }

Test id a b c oracle Pass

1 -1 -1 -1 INVALID pass

2 1 1 1 EQUILATERAL pass

3 2 2 3 ISOSCELES pass

4 2 3 2 ISOSCELES fail

5 3 2 2 ISOSCELES fail

6 2 3 4 SCALENES fail

Correct fix

(a == b || b == c || a== c)

Traverse all mutations of line 6, and check

Hard to generate correct fix since a==c

never appears elsewhere in the program.

OR

Generate the constraint

f(2,2,3)f(2,3,2) f(3,2,2)f(2,3,4)

And get the solution

f(a,b,c) = (a == b||b == c || a== c)

APPLICATION IN
EDUCATION: FEASIBILITY

Prof. Abhik Roychoudhury

National University of Singapore

CS3213 FSE course by Abhik Roychoudhury 35

NOVEL APPLICATIONS: INTELLIGENT
TUTORING

36

Use program repair in intelligent tutoring systems to give the

students’ individual attention.

Conducted user studies

DATASET USED IN STUDIES

▪ Lab: Programming assignments

37

CLOSE TO INCORRECT VS CLOSE TO
CORRECT

38

R
e
p
air R

ate

Close to Incorrect

(test failure >= 50%)

Close to Correct

(test failure <

50%)

ALMOST INCORRECT VS ALMOST CORRECT

39

R
e
p
air

R
ate

Almost

Incorrect

Almost

Correct

The fact that student programs are often

significantly incorrect makes it difficult to

fix those programs.

PARTIAL REPAIR AS A HINT

• Control-flow hints

• change of if-conditionals

• change of loop-exit conditions

• Data-flow hints

• adding/deleting statements

• Conditional data-flow hints:

if (/* guard condition */) {

/* a data-flow hint */

}

40

P:5

F:5

P:6

F:4

feedback

NB: {Conditional data-flow hints} ⊃ {Data-flow hints}

TAILORED REPAIR STRATEGY

• Look for the following in parallel

• a control-flow hint

• a conditional data-flow hint

• Benefits

• Reduce the search space of each repair tool

• Combine multiple repair tools in a complementary way

• A conditional data-flow hint can be composed of

1. a data-flow hint from search-based repair

2. a guarded condition from semantic repair

41

if (/* guard condition */) {

/* a data-flow hint */

}

TAILORING REPAIR POLICY

42

P:8

F:2

P:5

F:5
P:6

F:4

P:9

F:1partial

repair

P:10

F: 0

P: # of passing tests

F: # of failing tests

Partial Repair: (all previously passing tests) + (at least one previously failing test)

TWO-STEP REPAIR

43

Test 1

Test 2

Test 3

Test 4

Test 5

Test 1

Test 2

Test 3

Test 4

Test 5

Test 1

Test 2

Test 3

Test 4

Test 5

+ if (true) {

+ S’;

+ } else {

S;

+ }

+ if (E) {

+ S’;

+ } else {

S;

+ }

TWO-STEP REPAIR

44

Test 1

Test 2

Test 3

Test 4

Test 5

Test 1

Test 2

Test 3

Test 4

Test 5

Test 1

Test 2

Test 3

Test 4

Test 5

+ if (true) {

+ S’;

+ } else {

S;

+ }

+ if (E) {

+ S’;

+ } else {

S;

+ }

NEW RESULT

• 84% improvement

45

R
e
p
air R

ate

Previous New

CONCLUSION

• Out-of-the-box application of APR tools to ITS is infeasible

• Positive result after adopting

• a new repair policy accepting partial repairs

• a new repair strategy

• Further improvement seems possible by refining repair

operators (e.g., strings and arrays)

• Reading

• https://www.comp.nus.edu.sg/~abhik/pdf/FSE17.pdf

46

https://www.comp.nus.edu.sg/~abhik/pdf/FSE17.pdf

CONCLUSION

• User study:

• TA’s grading performance improves.

• Novice students do not seem to know how to effectively make

use of repairs.

• Future work:

• How to transform repairs into hints more comprehensible to

novice students?

• We share our dataset and toolset

• https://github.com/jyi/ITSP

47

https://github.com/jyi/ITSP

TUTORING – BEYOND REPAIR

48

