SOFTWARE DEBUGGING

CS3213 FSE

National University of Singapore £

CS3213 FSE course by Abhik Roychoudhury

WHAT WE DID EARLIER

System Requirements: Use-cases, Scenarios, Sequence Diagrams
System structure: Class diagrams

Discussion on semantics

System behavior: State diagrams

Discussion of the thinking behind your course project

Static analysis and vulnerability detection: Secure SE

Test-suite estimation

Today
Software Debugging

CS3213 FSE course by Abhik Roychoudhury

SOFTWARE CONSTRUCTION

From a design model
In safety-critical domains — automotive, avionics.
DO 178C — software in airborne systems.

Or, hand-constructed
Usual practice — audio, video and other domains.

UML models only for guidance.

CS3213 FSE course by Abhik Roychoudhury

PROGRAMMING

CS3213 FSE

CCCCCC

Creativity + Precision

by Abhik Roychoudhury

THE ART OF DEBUGGING

CS3213 FSE course by Abhik Roychoudhury

"A software bug (or just
"bug") is an error, flaw,
mistake, ... in a computer
program that prevents it from
behaving as intended (e.qg.,
producing an incorrect
result). ... Reports detailing
bugs in a program are
commonly known as bug
reports, fault reports, ...
change requests, and so
forth."

--- Wikipedia

ORGANIZATION

Brief History of Debugging
Dynamic checking of programs
Dynamic slicing
Relevant Slicing

Fault Localization

CS3213 FSE course by Abhik Roychoudhury

A QUOTE FROM 20 YEARS AGO

“Even today, debugging remains very much of an art. Much of the computer science

community has largely ignored the debugging problem..... over 50 percent of the
problems resulted from the time and space chasm between symptom and root cause

or inadequate debugging tools.”

Hailpern & Santhanam, IBM Systems Journal, 41 (1), 2002

What about the current techniques, beyond breakpoints!?

Let us review them first.
Any progress in 2002 — 2022?

How can white-box analysis help? (we briefly discuss in week 9)

CS3213 FSE course by Abhik Roychoudhury 0

DYNAMIC SLICING: A [|5T-
GENERATION DEBUGGING AID

Instrument

S Program

CS3213 FSE course by Abhik Roychoudhury

DYNAMIC SLICING

input a Consider input a ==
1 bz=2;
2 x=1;
3 If (a>
Control g 4 f (: (b)>{1) g
Dependence
5 X=2:
j Data
} Dependence
6 printf (“%d", x);
Slicing
Criterion

CS3213 FSE course by Abhik Roychoudhury °

DYNAMIC SLICING FOR
DEBUGGING?

Scalability
Large traces to analyze (and store?)
Optimizations exist — online compression.
Slice is too huge — slice comprehension
Tools such as WHYLINE have made it more user friendly
Slicing still does not tell us what is actually wrong
Where did we veer off from the intended behavior?

What is the intended behavior? Often not documented! Lack
of specifications is a problem.

CS3213 FSE course by Abhik Roychoudhury

STATISTICAL FAULT
LOCALIZATION

Ranked list of

< Y Y
suspicious

statements

Assign scores to program statements based on their

occurrence in passing / failing tests. Correlation equals
causation!

fail(s)

allfail An example of scoring
fail(s) pass(s) scheme [Tarantula]
allfail allpass

Score(s) =

CS3213 FSE course by Abhik Roychoudhury

RANKED BUG REPORT

We use the Tarantula toolkit.

Given a test-suite T

fail(s)
allfail

Score(s) = fail(s) + pass(s)

allfail allpass
fail(s) = # of failing executions in which s occurs

pass(s) = # of passing executions in which s occurs
allfail = Total # of failing executions
allpass =Total # of passing executions

allfail + allpass = |T|

Can also use other metric like Ochiai.

CS3213 FSE course by Abhik Roychoudhury

Name Formula Name Formula
2y ey
Jaccard P v Anderberg P P
. 2o . a7
Serensen-Dice T e Dice o Ty g
i Tef — 1 o Tf Y
Eulczynskil o+ Kulczynski2 g l[ﬂr.f—ﬂn.-' + o)
Ty e HInp —Inf —ep
Russell and Rao Tt Hamann e Tigy Toicn Tong
. . AgfHinp Nt 7 Hidnp)
Simple Matching P T v Sokal T T——
e -+Enp ey
M o g Mz B T Ty g
. e +ilng jﬂc_l' — gl —lep
Rogers-Tanimoto oo o THf Toca) Goodman T Tanr Tag,
Hamming etc. [Y . Euclid VI F Ong
i e . Tef
Ochia Tarmmary || Overiap BTy
L3
Tarantula —;.-% Zoltar i TR
o sy p i aep Sof Honj +oept—g F—
i _ Bep 17
Ample e — aghes Wongl e f
Wong2 Oof — Opp
Oep ifag, =2
Wonga ar—h wherei={ 2 +0.1a, —2) if2 <a,, <10
2.5+ 0.001ie, — 10) ifcrfp = 10
Ochiai2 —

u e B K ing +i3nf Nide f +nf Kopp+Hing)

Geometric Mean

daf Eop—onf Gep
a0 +iZep Kanptans e 4ol foep+ang)

Harmonic Mean

I3, .'-E?:p _anll'-ﬂcp M '-Er,l" _ac_p Hﬂrzp +ﬂ'_.1|." I+, f +a.'1,|'- H'Ucp +ar:p]
(e +ﬂ-|'p:": Onp+dnf |':C|'u.',l' +nf |':'E|'u.'p +ﬂ'.'1p:'

24 rang —2anfacp

Arithmetic Mean AT e e -
24 rang —Zanfacp
Cohen 10 +ep Fing T HHder +gf K +ing]
Flnn — e Gpn— @7 —dp &
Scott 430 Cup ot i 2
2§ +onf +oep N 2anp +anf +dep
: —danFden —|Ggf —Gpp [
Floiss i fidnn ni" Tep i3
[2agr +iagf ity H 2omp +iogf +oep |
1 ef 3 Qnp
RDEDT'I 2 { 2o Hanf Hiep 2app-t+inf +Hiep :I
Rogot2 (L L T Tm)
' dsih (ST EE% ef Wi o Gnntle Onp+Onf

Can use several other available
metrics for ranking statements,
e.g. Ochiai metric

fail(s)
Score(s)=

Vallfail*(fail(s)+pass(s))

A model for spectra-based software
diagnosis, Naish et. al., TOSEM 20(3),
2011.

FAILURES AND CAUSES

A failure is an effect of some cause: elimination/workaround of
the cause should remove the effect.

Anomalies, hints

Guess a cause

Verify cause

Identify a
minimal cause

[A. Zeller: Why Programs Fail, A Guide to Systematic Debugging]

CS3213 FSE course by Abhik Roychoudhury G

ISOLATING FAILURE CAUSES A LA DELTA
DEBUGGING

How to figure out a minimal
cause that ‘explains’ an error?

Use a variation on binary search:
narrow the difference between
passing and failing inputs

Can do it on code (old version to
new version)

On thread schedules

A. Zeller: Why Programs Fail, A Guide to Systematic Debugging J

CS3213 FSE course by Abhik Roychoudhury °

THE ROLE OF SPECIFICATIONS

input =0
output =0

What
would have
been right?

Specification about
observable output

CS3213 FSE course by Abhik Roychoudhury

ORGANIZATION

Brief History of Debugging
Dynamic checking of programs
Dynamic slicing
Relevant slicing

Fault Localization

CS3213 FSE course by Abhik Roychoudhury

DYNAMIC SLICING FOR
DEBUGGING

Instrument
- e e

ynamic Slice =
criterion--~ Bug Report

__

CS3213 FSE course by Abhik Roychoudhury

DYNAMIC SLICING

Consider inputa == 2

1b=2;
2y=1;
3If (a>1){
Control :
Dependenceg 4 (b>1){
5 X=2: Data
} Dependence
} : o _ Slicing
Gprintt ("70d", X); Criterion

CS3213 FSE course by Abhik Roychoudhury G

DYNAMIC SLICE

Set slicing criterion
(Variable v at first instance of line 70)
The value of variable v at first instance of line 70 is unexpected.
Dynamic slice
Closure of
Data dependencies &
Control dependencies

from the slicing criterion.

CS3213 FSE course by Abhik Roychoudhury

STATIC VS DYNAMIC SLICING

Static Slicing

source code
statement

static dependence
Dynamic Slicing
a particular execution

statement instance

dynamic dependence

CS3213 FSE course by Abhik Roychoudhury

STATIC VS DYNAMIC SLICING

1b=1;

21f (a>1)

3 x=1;

delse

5 x=2;)

6pr|ntf (“%d”, X); Slicing Criterion

CS3213 FSE course by Abhik Roychoudhury @

STATIC VS DYNAMIC SLICING

1p.f=1;
2 X=q.f, — p and g point to
3printf (“%d”, x); the same object?

Slicing Criterion

Static points-to analysis is always conservative

CS3213 FSE course by Abhik Roychoudhury a

RELEVANT SLICING

Input: a=2

.,

Source of Failure/'

Dynamic Slice

Execution i1s omitted }

CS3213 FSE course by Abhik Roychoudhury @

4)
POTENTIAL DEPENDENCE
\ y

Input: a=2

5 X=2;

}
printf (“%d", x);

CS3213 FSE course by Abhik Roychoudhury

s 2
RELEVANT SLICE

\. y,
b=1: iInput: a=2
x=1:

Potential :
Dependence I (b>1){ Dynamic Data
5 X=2: Dependence
}
}

printf (“%d”, x);
CS3213 FSE course by Abhik Roychoudhury a

-

_

PROGRAM SLICE

Static Dynamic Relevant

1

o WD

6

CS3213 FSE

CCCCCC

by Abhik Roychoudhury

Input: a=2

ORGANIZATION

Dynamic checking of programs
Dynamic slicing
Relevant slicing

Fault Localization

CS3213 FSE course by Abhik Roychoudhury

FAULT LOCALIZATION:
OVERVIEW

Compare
Execution

l

Qw As bug report

Developer

CS3213 FSE course by Abhik Roychoudhury

TESTING BASED FAULT
LOCALIZATION

= What to Compare

= choice of the Execution Run

= statement / basic block
= predicates / branch statement
= potential invariants

= variable values

CS3213 FSE course by Abhik Roychoudhury

FAULT LOCALIZATION -

STATEMENT
] __ > Test Suite (test cases)
l Program
Failing Runs / EDSuccessful Runs
Set of Covered A B
Statements
A B

CS3213 FSE course by Abhik Roychoudhury °

FAULT LOCALIZATION -

BRANCHES
. v=0;
2. if (x>0) > if (x>=0)
. u=b;
4. else
5. u=v;
6.printf(“%d”,u);

CS3213 FSE course by Abhik Roychoudhury

FAULT LOCALIZATION -

BRANCHES
|. v=0;
f’ 1. v=0;

2. if (x>0) 2. if (x>0)

3 u=>5;
4. else
5. u=v;
6. printf(“%d”,u); 6. printf("%d",u);

Failing run, x=0 Successful run, x=1

CS3213 FSE course by Abhik Roychoudhury

o

a bk wbdhE

COMPARING EXECUTIONS

m-=...

if (m >= 0) {\

lastm = m;

CS3213 FSE

CCCCCC

should be
If ((Im >=0) && (lastm!=m))

by Abhik Roychoudhury

o Bl gm Lo =

COMPARING EXECUTIONS

Failing run

CS3213 FSE

CCCCCC

m=... 1. m=..
if (m >=0) { 2. if(m>=0){
3.
lastm = m; 4. lastm = m;
} 5. }
0.

Successful run

by Abhik Roychoudhury

FAULT LOCALIZATION

Successful Run Pool> «—

!

Generate

Choose

(Failng Run) Successful Run >

T~

Compare Execution

}

As bug report

CS3213 FSE course by Abhik Roychoudhury

~~—

Testing

Change Failing
Input

EXAMPLE PROGRAM

If (a)
=i+ 1;
iIf (b)
j=]+1
If (C)
If (d)
k=k+ 1:
else
k=k+ 2;
0. printf(“%d”, k);

Program

= 19 by = bw gl s PN =

CS3213 FSE course by Abhik Roychoudhury

COMPARING EXECUTIONS

2. =1+ 1; 2. =1+ 1;
4. =] +1;
7. k=k+1;
8. else 8. else
0. k=k+ 2:

Execution run 11 Execution run Tl

CS3213 FSE course by Abhik Roychoudhury

SET OF STATEMENTS

S = Set of statements executed in T{
{1,3,5,6,7,10}

S| = Set of statements executed in TUI
{1,3,4,5,6,9,10}

If Tt is faulty and mtl is passing
Bug report =S -S| = {4,7}

Choice of the execution run to compare with is very
important.

CS3213 FSE course by Abhik Roychoudhury

ANOTHER DIFFERENCE METRIC

il Successful Runs
ellling) R Number of Branches
T 1, M2
W Location of Branches
diff 1 diff 2

Compare

CS3213 FSE course by Abhik Roychoudhury

DIFFERENCE B/W TRACES

SHOWN
2. =1+ 1; 2 i=i+1
3. If (b)
4. =]+ 1
6. If (d)

7. k=k+1:

8. else 8 else
0. k=k+ 2;

CS3213 FSE course by Abhik Roychoudhury

COMPARE CORRESPONDING
STATEMENT INSTANCES

1. while (a){ 1. while (a){
2. If (b) 2. If (b)

3. I++; 3. I++;
4, '} 4. }

1. while (a){ 1. while (a){
2. If (b) 2. If (b)

3. 3. I++;
4, '} 4. }

1. while (a){ 1. while (a){
5. ... 2. If (b)

Use control dependencies!

CS3213 FSE course by Abhik Roychoudhury

15t Loop
lteration

2"d | oop
lteration

3 Loop
lteration

FORMAL NOTION OF
ALIGNMENT

For any pair of event e in run x and event €0 in run y, we
define align(e, €0) = true (e and €0 are aligned) iff.

stmt(e) = stmt(e0), and

either
e, €0 are the first events appearing in runs x,y or
align(dep(e, x), dep(e0, y)) = true.

dep(e, X) == the event on which e is dynamically control
dependent in run x.

CS3213 FSE course by Abhik Roychoudhury

COMPARISON OF DIFFERENCES

Failing run Successful runs

/ 7%

O O O | |
® O @ @
O e L
N
@ ® © ® @
m m T, diff diff

CS3213 FSE course by Abhik Roychoudhury

COMPARISON OF DIFFERENCES

by Abhik Roychoudhury

CS3213 FSE course

LOCATION OF BRANCHES IS
IMPORTANT

int main(int argc, char **argv)

if (argc < 3 X check the input

1) g R N

¥

printf("parameter error\n“); |
return O;

Favor branches near to
the observable error

#2m==d)

© o N o

}

CS3213 FSE

cccccc by Abhik Roychoudhury

FAULT LOCALIZATION — IN

SUMMARY
Successful Run Pool> +——| Testing
1 ~~ Change Failing
Generate Choose Input

(Faling Run>) CSuccesstul Run >
T~

Compare Execution

}

As bug report

CS3213 FSE course by Abhik Roychoudhury

BIG PICTURE -TESTING AND
DEBUGGING

Why test?
Feel good about the program you have written.
How does it relate to fault localization?
Testing identifies which inputs we run the program against.
What is a good set of inputs to test?

Once you run the selected inputs, for some of them the output
is unexpected.

These are the failing tests.

These are subjected to fault localization.

CS3213 FSE course by Abhik Roychoudhury

DEBUGGING &

VERIFICATION
l input =0
P
P G(pc = end =output > input)
loutput =0 \ /
9 Model Checker
ol
®
¢ 9 Counter-example:
- \ 7~®~\ Y input =0, output =0
0l0
We should have (output > input) ~
(a) Debugging (b) Model Checking

CS3213 FSE course by Abhik Roychoudhury

VERIFICATION AND TESTING

* Model checking tries to check a specific property for all
possible inputs

* Same as checking a shallow property by exhaustive testing

* Of course, the algorithms are more efficient than doing exhaustive
testing.

* Testing checks an expected output for a specific program input.

Materials on model checking are studied in CS4211|.

CS3213 FSE course by Abhik Roychoudhury e

