
SOFTWARE DEBUGGING

CS3213 FSE

Prof. Abhik Roychoudhury

National University of Singapore

CS3213 FSE course by Abhik Roychoudhury 1

WHAT WE DID EARLIER

2

◦ System Requirements: Use-cases, Scenarios, Sequence Diagrams

◦ System structure: Class diagrams

◦ Discussion on semantics

◦ System behavior: State diagrams

◦ Discussion of the thinking behind your course project

◦ Static analysis and vulnerability detection: Secure SE

◦ Test-suite estimation

◦ Today

◦ Software Debugging

SOFTWARE CONSTRUCTION

3

• From a design model

• In safety-critical domains – automotive, avionics.

• D0 178C – software in airborne systems.

• Or, hand-constructed

• Usual practice – audio, video and other domains.

• UML models only for guidance.

PROGRAMMING

Creativity Precision+

4

THE ART OF DEBUGGING

5

“A software bug (or just
"bug") is an error, flaw,
mistake, … in a computer
program that prevents it from
behaving as intended (e.g.,
producing an incorrect
result). … Reports detailing
bugs in a program are
commonly known as bug
reports, fault reports, …
change requests, and so
forth.”
--- Wikipedia

ORGANIZATION

6

• Brief History of Debugging

• Dynamic checking of programs

• Dynamic slicing

• Relevant Slicing

• Fault Localization

A QUOTE FROM 20 YEARS AGO

“Even today, debugging remains very much of an art. Much of the computer science

community has largely ignored the debugging problem….. over 50 percent of the

problems resulted from the time and space chasm between symptom and root cause

or inadequate debugging tools.”

Hailpern & Santhanam, IBM Systems Journal, 41(1), 2002

What about the current techniques, beyond breakpoints?

Let us review them first.

Any progress in 2002 – 2022?

How can white-box analysis help? (we briefly discuss in week 9)

7

DYNAMIC SLICING: A 1 ST-
GENERATION DEBUGGING AID

8

Program

Input

Exec. Trace

Output

OK Unexpected, debug it

Dynamic Slice =

Bug Reportcriterion

Debugging

Instrument

DYNAMIC SLICING

9

b=2;

x=1;

if (a>1){

if (b>1){

x=2;

}

}

printf (“%d”, x);

1

2

3

4

5

6

Slicing

Criterion

Data

Dependence

Control

Dependence

Consider input a == 2input a

DYNAMIC SLICING FOR
DEBUGGING?

• Scalability

• Large traces to analyze (and store?)

• Optimizations exist – online compression.

• Slice is too huge – slice comprehension

• Tools such as WHYLINE have made it more user friendly

• Slicing still does not tell us what is actually wrong

• Where did we veer off from the intended behavior?

• What is the intended behavior? Often not documented! Lack

of specifications is a problem.

10

STATISTICAL FAULT
LOCALIZATION

11

Buggy

Program

Test Suite

Fault

Localization

Ranked list of

suspicious

statements

Assign scores to program statements based on their

occurrence in passing / failing tests. Correlation equals

causation!

Score(s) =

fail(s)

allfail

fail(s)

allfail

pass(s)

allpass
+

An example of scoring

scheme [Tarantula]

RANKED BUG REPORT

• We use the Tarantula toolkit.

• Given a test-suite T

• fail(s)  # of failing executions in which s occurs

• pass(s)  # of passing executions in which s occurs

• allfail Total # of failing executions

• allpass Total # of passing executions

• allfail + allpass = |T|

• Can also use other metric like Ochiai.

Score(s) =

fail(s)

allfail

fail(s)

allfail

pass(s)

allpass
+

12

13

A model for spectra-based software

diagnosis, Naish et. al., TOSEM 20(3),

2011.

Can use several other available

metrics for ranking statements,

e.g. Ochiai metric

fail(s)

allfail*(fail(s)+pass(s))
Score(s)=

FAILURES AND CAUSES

14

A failure is an effect of some cause: elimination/workaround of

the cause should remove the effect.

Guess a cause

Verify cause

Identify a

minimal cause

Anomalies, hintsA cause could be

some part of the

input, some fragment

of the code, or some

part of the

environment

An anomaly is an

observed deviation

between usual and

erroneous

executions. A hint

can come from, for

instance, static

analysis

A. Zeller: Why Programs Fail, A Guide to Systematic Debugging

ISOLATING FAILURE CAUSES A LA DELTA
DEBUGGING

• How to figure out a minimal

cause that ‘explains’ an error?

• Use a variation on binary search:

narrow the difference between

passing and failing inputs

• Can do it on code (old version to

new version)

• On thread schedules

15

A. Zeller: Why Programs Fail, A Guide to Systematic Debugging

THE ROLE OF SPECIFICATIONS

16

P

input = 0

output = 0

Specification about

observable output

Test input

What

went

wrong?

What

would have

been right?

Execution

ORGANIZATION

1

7

• Brief History of Debugging

• Dynamic checking of programs

• Dynamic slicing

• Relevant slicing

• Fault Localization

DYNAMIC SLICING FOR
DEBUGGING

1

8

Program

Input

Exec. Trace

Output

OK Unexpected, debug it

Dynamic Slice =

Bug Reportcriterion

Debugging

Instrument

DYNAMIC SLICING

b=2;

y=1;

If (a>1){

if (b>1){

x=2;

}

}

printf (“%d”, x);

1

2

3

4

5

6
Slicing

Criterion

Data

Dependence

Control

Dependence

Consider input a == 2

19

DYNAMIC SLICE

2

0

• Set slicing criterion

• (Variable v at first instance of line 70)

• The value of variable v at first instance of line 70 is unexpected.

• Dynamic slice

• Closure of

• Data dependencies &

• Control dependencies

• from the slicing criterion.

STATIC VS DYNAMIC SLICING

• Static Slicing

• source code

• statement

• static dependence

• Dynamic Slicing

• a particular execution

• statement instance

• dynamic dependence

21

STATIC VS DYNAMIC SLICING

b=1;

If (a>1)

x=1;

else

x=2;

printf (“%d”, x);

1

2

3

4

5

6 Slicing Criterion

22

STATIC VS DYNAMIC SLICING

• Static points-to analysis is always conservative

p.f = 1;

x= q.f;

printf (“%d”, x);

1

2

3

Slicing Criterion

p and q point to

the same object?

23

b=1;

x=1;

If (a>1){

if (b>1){

x=2;

}

}

printf (“%d”, x);

1

2

3

4

5

6

input: a=2

Source of Failure

Dynamic Slice

Execution is omitted

RELEVANT SLICING

24

b=1;

x=1;

If (a>1){

if (b>1){

x=2;

}

}

printf (“%d”, x);

1

2

3

4

5

6

input: a=2

POTENTIAL DEPENDENCE

25

b=1;

x=1;

If (a>1){

if (b>1){

x=2;

}

}

printf (“%d”, x);

1

2

3

4

5

6

input: a=2

RELEVANT SLICE

Potential

Dependence Dynamic Data

Dependence

26

b=1;

x=1;

If (a>1){

if (b>1){

x=2;

}

}

printf (“%d”, x);

1

2

3

4

5

6

input: a=2

PROGRAM SLICE

Static Dynamic Relevant

1

2

3

4

5

6

2

6

1

2

4

6

27

ORGANIZATION

2

8

• Dynamic checking of programs

• Dynamic slicing

• Relevant slicing

• Fault Localization

FAULT LOCALIZATION:
OVERVIEW

2

9

Compare

Execution

Failing Run Successful Run

Difference As bug report

Developer

TESTING BASED FAULT
LOCALIZATION

◼ What to Compare

◼ choice of the Execution Run

◼ How to Compare

◼ statement / basic block

◼ predicates / branch statement

◼ potential invariants

◼ variable values

30

FAULT LOCALIZATION -
STATEMENT

Test Suite (test cases)

Program

Successful RunsFailing Runs

Set of Covered

Statements

A B

A
B

31

FAULT LOCALIZATION -
BRANCHES

1. v=0;

2. if (x>0)

3. u=5;

4. else

5. u=v;

6.printf(‘‘%d’’,u);

if (x>=0)

32

FAULT LOCALIZATION -
BRANCHES

1. v=0;

2. if (x>0)

3. u=5;

6. printf(‘‘%d’’,u);

1. v=0;

2. if (x>0)

4. else

5. u=v;

6. printf(‘‘%d’’,u);

Failing run, x=0 Successful run, x=1
33

COMPARING EXECUTIONS

3

4

1 . m=...

2. if (m >= 0) {

3. ...

4. lastm = m;

5. }

6. …..

should be

if ((m >= 0) && (lastm!=m))

COMPARING EXECUTIONS

3

5

Failing run Successful run

1 . m=...

2. if (m >= 0) {

3. ...

4. lastm = m;

5. }

6. …..

1 . m=...

2. if (m >= 0) {

3. ...

4. lastm = m;

5. }

6. …..

FAULT LOCALIZATION

3

6

Compare Execution

Failing Run Successful Run

Difference As bug report

Choose

Successful Run Pool

Difference Metric

Testing

Change Failing

InputGenerate

EXAMPLE PROGRAM

3

7

1. if (a)

2. i = i + 1;

3. if (b)

4. j = j + 1;

5. if (c)

6. if (d)

7. k = k + 1;

8. else

9. k = k + 2;

10. printf(“%d”, k);

Program

COMPARING EXECUTIONS

3

8

Execution run π Execution run π1

1. if (a)

2. i = i + 1;

3. if (b)

4. j = j + 1;

5. if (c)

6. if (d)

7. k = k + 1;

8. else

9. k = k + 2;

10. printf(“%d”, k);

1. if (a)

2. i = i + 1;

3. if (b)

4. j = j + 1;

5. if (c)

6. if (d)

7. k = k + 1;

8. else

9. k = k + 2;

10. printf(“%d”, k);

SET OF STATEMENTS

3

9

• S = Set of statements executed in π
• {1,3,5,6,7,10}

• S1 = Set of statements executed in π1

• {1,3,4,5,6,9,10}

• If π is faulty and π1 is passing

• Bug report = S – S1 = {4,7}

• Choice of the execution run to compare with is very

important.

ANOTHER DIFFERENCE METRIC

4

0

Failing Run

π1, π2π

Successful Runs

diff_1 diff_2

Compare

 Number of Branches

 Location of Branches

DIFFERENCE B/W TRACES
SHOWN

4

1

1. if (a)

2. i = i + 1;

3. if (b)

4. j = j + 1;

5. if (c)

6. if (d)

7. k = k + 1;

8. else

9. k = k + 2;

10. printf(“%d”, k);

1. if (a)

2. i = i + 1;

3. if (b)

4. j = j + 1;

5. if (c)

6. if (d)

7. k = k + 1;

8. else

9. k = k + 2;

10. printf(“%d”, k);

COMPARE CORRESPONDING
STATEMENT INSTANCES

42

1. while (a){

2. if (b)

3. i++;

4. }

1. while (a){

2. if (b)

3.

4. }

1. while (a){

5. ……

1. while (a){

2. if (b)

3. i++;

4. }

1. while (a){

2. if (b)

3. i++;

4. }

1. while (a){

2. if (b)

1st Loop

Iteration

2nd Loop

Iteration

3rd Loop

Iteration

Use control dependencies!

FORMAL NOTION OF
ALIGNMENT

For any pair of event e in run x and event e0 in run y, we

define align(e, e0) = true (e and e0 are aligned) iff.

• stmt(e) = stmt(e0), and

• either

• e, e0 are the first events appearing in runs x, y or

• align(dep(e, x), dep(e0, y)) = true.

• dep(e, x) == the event on which e is dynamically control

dependent in run x.

43

COMPARISON OF DIFFERENCES

diff diff’

Failing run

π

Successful runs

π1 π2

?

44

COMPARISON OF DIFFERENCES

diff diff’

<

diff diff’

<

45

1. int main(int argc, char **argv)

2. if (argc < 3){

3. printf(“parameter error\n”);

4. return 0;

5. }

6. ….

7. if (m == -1)

8. ….

9. }

check the input

Favor branches near to

the observable error

46

LOCATION OF BRANCHES IS
IMPORTANT

FAULT LOCALIZATION – IN
SUMMARY

4

7

Compare Execution

Failing Run Successful Run

Difference As bug report

Choose

Successful Run Pool

Difference Metric

Testing

Change Failing

InputGenerate

BIG PICTURE – TESTING AND
DEBUGGING

• Why test?

• Feel good about the program you have written.

• How does it relate to fault localization?

• Testing identifies which inputs we run the program against.

• What is a good set of inputs to test?

• Once you run the selected inputs, for some of them the output

is unexpected.

• These are the failing tests.

• These are subjected to fault localization.

48

DEBUGGING &
VERIFICATION

P

input = 0

output = 0

P

Model Checker

Counter-example:

input = 0, output = 0

We should have (output > input)

(a) Debugging (b) Model Checking

G(pc = end output > input)

49

VERIFICATION AND TESTING

• Model checking tries to check a specific property for all

possible inputs

• Same as checking a shallow property by exhaustive testing

• Of course, the algorithms are more efficient than doing exhaustive

testing.

• Testing checks an expected output for a specific program input.

50

Materials on model checking are studied in CS4211.

