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WHAT WE DID EARLIER

System Requirements: Use-cases, Scenarios, Sequence Diagrams
System structure: Class diagrams

Discussion on semantics

System behavior: State diagrams

Discussion of the thinking behind your course project

Static analysis and vulnerability detection: Secure SE

Test-suite estimation

Today
Software Debugging
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SOFTWARE CONSTRUCTION

From a design model
In safety-critical domains — automotive, avionics.
DO 178C — software in airborne systems.

Or, hand-constructed
Usual practice — audio, video and other domains.

UML models only for guidance.
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PROGRAMMING
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THE ART OF DEBUGGING
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"A software bug (or just
"bug") is an error, flaw,
mistake, ... in a computer
program that prevents it from
behaving as intended (e.qg.,
producing an incorrect
result). ... Reports detailing
bugs in a program are
commonly known as bug
reports, fault reports, ...
change requests, and so
forth."

--- Wikipedia




ORGANIZATION

Brief History of Debugging
Dynamic checking of programs
Dynamic slicing
Relevant Slicing

Fault Localization
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A QUOTE FROM 20 YEARS AGO

“Even today, debugging remains very much of an art. Much of the computer science

community has largely ignored the debugging problem..... over 50 percent of the
problems resulted from the time and space chasm between symptom and root cause

or inadequate debugging tools.”

Hailpern & Santhanam, IBM Systems Journal, 41 (1), 2002

What about the current techniques, beyond breakpoints!?

Let us review them first.
Any progress in 2002 — 2022?

How can white-box analysis help? (we briefly discuss in week 9)
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DYNAMIC SLICING: A [|5T-
GENERATION DEBUGGING AID

Instrument

S Program

_________________________________________________________
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DYNAMIC SLICING

input a Consider input a ==
1 bz=2;
2 x=1;
3 If (a>
Control g 4 f (: (b)>{1) g
Dependence
5 X=2:
j Data
} Dependence
6 printf (“%d", x);
Slicing
Criterion
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DYNAMIC SLICING FOR
DEBUGGING?

Scalability
Large traces to analyze (and store?)
Optimizations exist — online compression.
Slice is too huge — slice comprehension
Tools such as WHYLINE have made it more user friendly
Slicing still does not tell us what is actually wrong
Where did we veer off from the intended behavior?

What is the intended behavior? Often not documented! Lack
of specifications is a problem.
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STATISTICAL FAULT
LOCALIZATION

Ranked list of

< Y Y
suspicious

statements

Assign scores to program statements based on their

occurrence in passing / failing tests. Correlation equals
causation!

fail(s)

allfail An example of scoring
fail(s) pass(s) scheme [Tarantula]
allfail allpass

Score(s) =
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RANKED BUG REPORT

We use the Tarantula toolkit.

Given a test-suite T

fail(s)
allfail

Score(s) = fail(s) + pass(s)

allfail allpass
fail(s) = # of failing executions in which s occurs

pass(s) = # of passing executions in which s occurs
allfail = Total # of failing executions
allpass =Total # of passing executions

allfail + allpass = |T|

Can also use other metric like Ochiai.
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Can use several other available
metrics for ranking statements,
e.g. Ochiai metric

fail(s)
Score(s)=

Vallfail*(fail(s)+pass(s))

A model for spectra-based software
diagnosis, Naish et. al., TOSEM 20(3),
2011.




FAILURES AND CAUSES

A failure is an effect of some cause: elimination/workaround of
the cause should remove the effect.

Anomalies, hints

Guess a cause

Verify cause

Identify a
minimal cause

[ A. Zeller: Why Programs Fail, A Guide to Systematic Debugging ]
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ISOLATING FAILURE CAUSES A LA DELTA
DEBUGGING

How to figure out a minimal
cause that ‘explains’ an error?

Use a variation on binary search:
narrow the difference between
passing and failing inputs

Can do it on code (old version to
new version)

On thread schedules

A. Zeller: Why Programs Fail, A Guide to Systematic Debugging J
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THE ROLE OF SPECIFICATIONS

input =0
output =0

What
would have
been right?

Specification about
observable output
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ORGANIZATION

Brief History of Debugging
Dynamic checking of programs
Dynamic slicing
Relevant slicing

Fault Localization
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DYNAMIC SLICING FOR
DEBUGGING

Instrument
- e e

ynamic Slice =
criterion--~ Bug Report

____________________________________________________________________________
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DYNAMIC SLICING

Consider inputa == 2

1b=2;
2y=1;
3If (a>1){
Control :
Dependenceg 4 (b>1){
5 X=2: Data
} Dependence
} : o _ Slicing
Gprintt ("70d", X); Criterion

CS3213 FSE course by Abhik Roychoudhury G



DYNAMIC SLICE

Set slicing criterion
(Variable v at first instance of line 70)
The value of variable v at first instance of line 70 is unexpected.
Dynamic slice
Closure of
Data dependencies &
Control dependencies

from the slicing criterion.
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STATIC VS DYNAMIC SLICING

Static Slicing

source code
statement

static dependence
Dynamic Slicing
a particular execution

statement instance

dynamic dependence
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STATIC VS DYNAMIC SLICING

1b=1;

21f (a>1)

3 x=1;

delse

5 x=2; )

6pr|ntf (“%d”, X); Slicing Criterion
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STATIC VS DYNAMIC SLICING

1p.f=1;
2 X=q.f, — p and g point to
3printf (“%d”, x); the same object?

Slicing Criterion

Static points-to analysis is always conservative
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RELEVANT SLICING

Input: a=2

.,

Source of Failure/'

Dynamic Slice

Execution i1s omitted }
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4 )
POTENTIAL DEPENDENCE
\ y

Input: a=2

5 X=2;

}
printf (“%d", x);
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s 2
RELEVANT SLICE

\. y,
b=1: iInput: a=2
x=1:

Potential :
Dependence I (b>1){ Dynamic Data
5 X=2: Dependence
}
}

printf (“%d”, x);
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PROGRAM SLICE

Static Dynamic Relevant

1

o WD

6
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Input: a=2



ORGANIZATION

Dynamic checking of programs
Dynamic slicing
Relevant slicing

Fault Localization
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FAULT LOCALIZATION:
OVERVIEW

Compare
Execution

l

Qw As bug report

Developer
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TESTING BASED FAULT
LOCALIZATION

=  What to Compare

= choice of the Execution Run

= statement / basic block
= predicates / branch statement
= potential invariants

= variable values
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FAULT LOCALIZATION -

STATEMENT
] __ >  Test Suite (test cases)
l Program
Failing Runs / EDSuccessful Runs
Set of Covered A B
Statements
A B
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FAULT LOCALIZATION -

BRANCHES
. v=0;
2. if (x>0) > if (x>=0)
. u=b;
4. else
5. u=v;
6.printf(“%d”,u);
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FAULT LOCALIZATION -

BRANCHES
|. v=0;
f’ 1. v=0;

2. if (x>0) 2. if (x>0)

3 u=>5;
4. else
5. u=v;
6. printf(“%d”,u); 6. printf("%d",u);

Failing run, x=0 Successful run, x=1
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COMPARING EXECUTIONS

m-=...

if (m >= 0) {\

lastm = m;

CS3213 FSE
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should be
If ((Im >=0) && (lastm!=m))
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o Bl gm Lo =

COMPARING EXECUTIONS

Failing run

CS3213 FSE

CCCCCC

m=... 1. m=..
if (m >=0) { 2. if(m>=0){
3.
lastm = m; 4. lastm = m;
} 5. }
0.

Successful run
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FAULT LOCALIZATION

Successful Run Pool> «—

!

Generate

Choose

(Failng Run ) Successful Run >

T~

Compare Execution

}

As bug report
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EXAMPLE PROGRAM

If (a)
=i+ 1;
iIf (b)
j=]+1
If (C)
If (d)
k=k+ 1:
else
k=k+ 2;
0. printf(“%d”, k);

Program

= 19 by = bw gl s PN =
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COMPARING EXECUTIONS

2. =1+ 1; 2. =1+ 1;
4. =] +1;
7. k=k+1;
8. else 8. else
0. k=k+ 2:

Execution run 11 Execution run Tl
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SET OF STATEMENTS

S = Set of statements executed in T{
{1,3,5,6,7,10}

S| = Set of statements executed in TUI
{1,3,4,5,6,9,10}

If Tt is faulty and mtl is passing
Bug report =S -S| = {4,7}

Choice of the execution run to compare with is very
important.
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ANOTHER DIFFERENCE METRIC

il Successful Runs
ellling) R Number of Branches
T 1, M2
W Location of Branches
diff 1 diff 2

Compare
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DIFFERENCE B/W TRACES

SHOWN
2. =1+ 1; 2 i=i+1
3. If (b)
4. =]+ 1
6. If (d)

7. k=k+1:

8. else 8 else
0. k=k+ 2;
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COMPARE CORRESPONDING
STATEMENT INSTANCES

1. while (a){ 1. while (a){
2. If (b) 2. If (b)

3. I++; 3. I++;
4, '} 4. }

1. while (a){ 1. while (a){
2. If (b) 2. If (b)

3. 3. I++;
4, '} 4. }

1. while (a){ 1. while (a){
5. ... 2. If (b)

Use control dependencies!
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FORMAL NOTION OF
ALIGNMENT

For any pair of event e in run x and event €0 in run y, we
define align(e, €0) = true (e and €0 are aligned) iff.

stmt(e) = stmt(e0), and

either
e, €0 are the first events appearing in runs x,y or
align(dep(e, x), dep(e0, y)) = true.

dep(e, X) == the event on which e is dynamically control
dependent in run x.
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COMPARISON OF DIFFERENCES

Failing run Successful runs

/ 7%

O O O | |
® O @ @
O e L
N
@ ® © ® @
m m T, diff  diff
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COMPARISON OF DIFFERENCES
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LOCATION OF BRANCHES IS
IMPORTANT

int main(int argc, char **argv)

if (argc < 3 X check the input

1) g R N

¥

printf("parameter error\n“); |
return O;

Favor branches near to
the observable error

#2m==d)

© o N o

}
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FAULT LOCALIZATION — IN

SUMMARY
Successful Run Pool> +——| Testing
1 ~~ Change Failing
Generate Choose Input

(Faling Run>)  CSuccesstul Run >
T~

Compare Execution

}

As bug report
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BIG PICTURE -TESTING AND
DEBUGGING

Why test?
Feel good about the program you have written.
How does it relate to fault localization?
Testing identifies which inputs we run the program against.
What is a good set of inputs to test?

Once you run the selected inputs, for some of them the output
is unexpected.

These are the failing tests.

These are subjected to fault localization.
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DEBUGGING &

VERIFICATION
l input =0
P
P G( pc = end =output > input)
loutput =0 \ /
9 Model Checker
ol
®
¢ 9 Counter-example:
- \ 7~®~\ Y input =0, output =0
0l0
We should have (output > input) ~
(a) Debugging (b) Model Checking
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VERIFICATION AND TESTING

* Model checking tries to check a specific property for all
possible inputs

* Same as checking a shallow property by exhaustive testing

* Of course, the algorithms are more efficient than doing exhaustive
testing.

* Testing checks an expected output for a specific program input.

Materials on model checking are studied in CS4211|.
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