SOFTWARE DEBUGGING

CS3213 FSE

Prof. Abhik Roychoudhury

National University of Singapore

CS3213 FSE course by Abhik Roychoudhury

WHAT WE DID EARLIER

- System Requirements: Use-cases, Scenarios, Sequence Diagrams
- System structure: Class diagrams
- Discussion on semantics
- System behavior: State diagrams
- Discussion of the thinking behind your course project
- Static analysis and vulnerability detection: Secure SE
- Test-suite estimation
- Today
 - Software Debugging

SOFTWARE CONSTRUCTION

- From a design model
 - In safety-critical domains automotive, avionics.
 - D0 178C software in airborne systems.
- Or, hand-constructed
 - Usual practice audio, video and other domains.
 - UML models only for guidance.

PROGRAMMING

+

Precision

THE ART OF DEBUGGING

"A software bug (or just "bug") is an error, flaw, mistake, ... in a computer program that prevents it from behaving as intended (e.g., producing an incorrect result). ... Reports detailing bugs in a program are commonly known as bug reports, fault reports, ... change requests, and so forth." --- Wikipedia

ORGANIZATION

- Brief History of Debugging
- Dynamic checking of programs
 - Dynamic slicing
 - Relevant Slicing
 - Fault Localization

A QUOTE FROM 20 YEARS AGO

"Even today, debugging remains very much of an art. Much of the computer science community has largely ignored the debugging problem..... over 50 percent of the problems resulted from the time and space chasm between symptom and root cause or inadequate debugging tools."

Hailpern & Santhanam, IBM Systems Journal, 41(1), 2002

What about the current techniques, beyond breakpoints?

Let us review them first.

Any progress in 2002 – 2022?

How can white-box analysis help? (we briefly discuss in week 9)

DYNAMIC SLICING FOR DEBUGGING?

- Scalability
 - Large traces to analyze (and store?)
 - Optimizations exist online compression.
 - Slice is too huge slice comprehension
 - Tools such as WHYLINE have made it more user friendly
- Slicing still does not tell us what is actually wrong
 - Where did we veer off from the intended behavior?
 - What *is* the intended behavior? Often not documented! Lack of specifications is a problem.

Assign scores to program statements based on their occurrence in passing / failing tests. *Correlation equals causation!*

An example of scoring scheme [Tarantula]

RANKED BUG REPORT

- We use the Tarantula toolkit.
- Given a test-suite T

- fail(s) \equiv # of failing executions in which s occurs
- $pass(s) \equiv #$ of passing executions in which s occurs
- allfail = Total # of failing executions
- allpass = Total # of passing executions
 - allfail + allpass = |T|
- Can also use other metric like Ochiai.

Name	Formula	Name Formula			
Jaccard	$\frac{a_{ef}}{a_{ef}+a_{nf}+a_{ep}}$	Anderberg	nderberg $\frac{a_{ef}}{a_{ef}+2(a_{nf}+a_{ep})}$		
Sørensen-Dice	$\frac{2a_{ef}}{2a_{ef}+a_{nf}+a_{ep}}$	Dice $\frac{2a_{ef}}{a_{ef}+a_{nf}+a_{ep}}$			
Kulczynski1	$\frac{a_{ef}}{a_{nf}+a_{ep}}$	Kulczynski2 $\frac{1}{2} \left(\frac{a_{ef}}{a_{ef} + a_{nf}} + \frac{a_{ef}}{a_{ef} + a_{ep}} \right)$			
Russell and Rao	$\frac{a_{ef}}{a_{ef}+a_{nf}+a_{ep}+a_{np}}$	Hamann $\frac{a_{ef} + a_{np} - a_{nf} - a_{ep}}{a_{ef} + a_{nf} + a_{ep} + a_{np}}$			
Simple Matching	$\frac{a_{ef} + a_{np}}{a_{ef} + a_{nf} + a_{ep} + a_{np}}$	Sokal $\frac{2(a_{ef}+a_{np})}{2(a_{ef}+a_{np})+a_{nf}+a_{ep}}$			
M1	$\frac{a_{ef} + a_{np}}{a_{nf} + a_{ep}}$	M2 $\frac{a_{ef}}{a_{ef} + a_{np} + 2(a_{nf} + a_{ep})}$			
Rogers-Tanimoto	$\frac{a_{ef} + a_{np}}{a_{ef} + a_{np} + 2(a_{nf} + a_{ep})}$	Goodman $\frac{2a_{ef}-a_{nf}-a_{ep}}{2a_{ef}+a_{nf}+a_{ep}}$			
Hamming etc.	$a_{ef} + a_{np}$	Euclid	$\sqrt{a_{ef} + a_{np}}$		
Ochiai	$\frac{a_{ef}}{\sqrt{(a_{ef}+a_{nf})(a_{ef}+a_{ep})}}$	Overlap	$\frac{a_{ef}}{\min(a_{ef}, a_{nf}, a_{ep})}$		
Tarantula	$\frac{\frac{a_{ef}}{a_{ef}+a_{nf}}}{\frac{a_{ef}}{a_{ef}+a_{nf}}+\frac{a_{ep}}{a_{ep}+a_{np}}}$	Zoltar	$\frac{a_{ef}}{a_{ef} + a_{nf} + a_{ep} + \frac{10000a_{nf}a_{ep}}{a_{ef}}}$		
Ample	$\frac{a_{ef}}{a_{ef}+a_{nf}}-\frac{a_{ep}}{a_{ep}+a_{np}}$	Wong1	a _{ef}		
Wong2	$a_{ef} - a_{ep}$				
Wong3	$a_{ef} - h$, where $h =$	$ \begin{cases} a_{ep} & \text{if } a_{ep} \leq 2 \\ 2 + 0.1(a_{ep} - 2) & \text{if } 2 < a_{ep} \leq 10 \\ 2.8 + 0.001(a_{ep} - 10) & \text{if } a_{ep} > 10 \end{cases} $			
Ochiai2	$\frac{a_{ef}a_{np}}{\sqrt{(a_{ef}+a_{ep})(a_{np}+a_{nf})(a_{ef}+a_{nf})(a_{ep}+a_{np})}}$				
Geometric Mean	$\frac{a_{ef}a_{np}-a_{nf}a_{ep}}{\sqrt{(a_{ef}+a_{ep})(a_{np}+a_{nf})(a_{ef}+a_{nf})(a_{ep}+a_{np})}}$				
Harmonic Mean	$\frac{(a_{ef}a_{np}-a_{nf}a_{ep})((a_{ef}+a_{ep})(a_{np}+a_{nf})+(a_{ef}+a_{nf})(a_{ep}+a_{np}))}{(a_{ef}+a_{ep})(a_{ef}+a_{ef})(a_{ef}+a_{ef})(a_{ef}+a_{ep})}$				
Arithmetic Mean	$\frac{2a_{ef}a_{np}-2a_{nf}a_{ep}}{(a_{ef}+a_{en})(a_{en}+a_{en})+(a_{ef}+a_{ef})(a_{en}+a_{en})}$				
Cohen	$\frac{a_{ef} + a_{ep} + a_{m}}{2a_{ef} a_{np} - 2a_{nf} a_{ep}} \frac{a_{ef} + a_{ef}}{2a_{ef} a_{np} - 2a_{nf} a_{ep}}$				
Scott	$\frac{4a_efa_{np}-4a_nfa_{ep}-(a_{nf}-a_{ep})^2}{(2a_ef+a_ef+a_{ep})(2a_{nf}+a_{ef}+a_{ep})}$				
Fleiss	$\frac{4a_e f a_{np} - 4a_n f a_{ep} - (a_n f - a_{ep})^2}{(2a_e f + a_n f + a_{ep}) + (2a_{pp} + a_n f + a_{ep})}$				
Rogot1	$\frac{1}{2} \left(\frac{a_{ef}}{2a_{ef} + a_{nf} + a_{ep}} + \frac{a_{p}}{2a_{np} + a_{nf} + a_{ep}} \right)$				
Rogot2	$\frac{\frac{1}{4}\left(\frac{a_{ef}}{a_{ef}} + \frac{a_{ef}}{a_{ef}} + \frac{a_{ef}}{a_{ef}} + \frac{a_{np}}{a_{np} + a_{ef}} + \frac{a_{np}}{a_{np} + a_{nf}}\right)}{\sum_{s=1}^{2} \sum_{s=1}^{2} \sum_{s=1$				

Can use several other available metrics for ranking statements, e.g. Ochiai metric

A model for spectra-based software diagnosis, Naish et. al., TOSEM 20(3), 2011.

FAILURES AND CAUSES

A failure is an effect of some cause: elimination/workaround of the cause should remove the effect.

A. Zeller: Why Programs Fail, A Guide to Systematic Debugging

ISOLATING FAILURE CAUSES A LA DELTA DEBUGGING

- How to figure out a minimal cause that 'explains' an error?
- Use a variation on binary search: narrow the difference between passing and failing inputs
 - Can do it on code (old version to new version)
 - On thread schedules

A. Zeller: Why Programs Fail, A Guide to Systematic Debugging

CS3213 FSE course by Abhik Roychoudhury

ORGANIZATION

- Brief History of Debugging
- Dynamic checking of programs
 - Dynamic slicing
 - Relevant slicing
 - Fault Localization

DYNAMIC SLICE

- Set slicing criterion
 - (Variable v at first instance of line 70)
 - The value of variable v at first instance of line 70 is unexpected.
- Dynamic slice
 - Closure of
 - Data dependencies &
 - Control dependencies
 - from the slicing criterion.

STATIC VS DYNAMIC SLICING

- Static Slicing
 - source code
 - statement
 - static dependence
- Dynamic Slicing
 - a particular execution
 - statement instance
 - dynamic dependence

p and q point to the same object?

Slicing Criterion

Static points-to analysis is always conservative

PROGRAM SLICE

Dynamic Relevant Static 1 b=1; 1 input: a=2 2 2 x=1; 2 2 3 3 If (a>1){ 4 4 if (b>1){ 4 x=2; 5 5 6 6 printf ("%d", x); 6 6

ORGANIZATION

- Dynamic checking of programs
 - Dynamic slicing
 - Relevant slicing
 - Fault Localization

TESTING BASED FAULT LOCALIZATION

- What to Compare
 - choice of the Execution Run
- How to Compare
 - statement / basic block
 - predicates / branch statement
 - potential invariants
 - variable values

FAULT LOCALIZATION -BRANCHES

FAULT LOCALIZATION -BRANCHES

- I. v=0;
 2. if (x>0)
 2. if (x>0)
 3. if (x>0)
 - 3. u=5;

- 4. else
- 5. u=v;

6. printf("%d",u);

Failing run, x=0

CS3213 FSE course by Abhik Roychoudhury

6. printf(``%d",u); Successful run, x=1

COMPARING EXECUTIONS

- 1. m=...
- 2. if (m >= 0) {
- 3. ...
- 4. lastm = m;
- 5. }
- 6.

- 1. m=...
- 2. if (m >= 0) {

. . .

3.

- 4. lastm = m;
- 5. <mark>6</mark>.

Failing run

Successful run

CS3213 FSE course by Abhik Roychoudhury

EXAMPLE PROGRAM

Program

1. if (a)
2.
$$i = i + 1;$$

3. if (b)
4. $j = j + 1;$
5. if (c)
6. if (d)
7. $k = k + 1;$
8. else
9. $k = k + 2;$
10. printf("%d", k);

COMPARING EXECUTIONS

- if (a)
 i = i + 1;
- 3. if (b)
- 4. j = j + 1;
- 5. if (c)
- 6. if (d)
- 7. k = k + 1;
- 8. else
- 9. k = k + 2;

10. printf("%d", k);

Execution run π

CS3213 FSE course by Abhik Roychoudhury

- 1. if (a)
- 2. i = i + 1;
- 3. if (b)
- 4. j = j + 1;
- 5. if (c)
- 6. if (d)
- 7. k = k + 1;
- 8. else
- 9. k = k + 2;

10. printf("%d", k);

Execution run πI

SET OF STATEMENTS

- S = Set of statements executed in π
 - {1,3,5,6,7,10}
- SI = Set of statements executed in π I
 - {I,3,4,5,6,9,I0}
- If π is faulty and πI is passing
 - Bug report = $S SI = \{4,7\}$
- Choice of the execution run to compare with is very important.

ANOTHER DIFFERENCE METRIC

- Number of Branches
- Location of Branches

Compare

DIFFERENCE B/W TRACES SHOWN

- 1. if (a)
- 2. i = i + 1;
- 3. if (b)
- 4. j = j + 1;
- 5. if (c)
- 6. if (d)
- 7. k = k + 1;
- 8. else
- 9. k = k + 2;

10. printf("%d", k);

- 1. if (a)
- 2. i = i + 1;
- 3. if (b)
- 4. j = j + 1;
- 5. if (c)
- 6. if (d)
- 7. k = k + 1;
- 8. else
- 9. k = k + 2; 10. printf("%d", k);

COMPARE CORRESPONDING STATEMENT INSTANCES

1.	while (a){	1.	while (a){	4 of 1
2.	if (b)	2.	if (b)	1 st Loop Iteration
3.	i++;	3.	i++;	
4.	}	4.	}	
1.	while (a){	1.	while (a){	Ond I
2.	if (b)	2.	if (b)	lteration
3.		3.	i++;	
4.	}	4.	}	
1.	while (a){	1.	while (a){	
5.		2.	if (b)	3 rd Loop

Use control dependencies!

CS3213 FSE course by Abhik Roychoudhury

FORMAL NOTION OF ALIGNMENT

For any pair of event e in run x and event e0 in run y, we define align(e, e0) = true (e and e0 are aligned) iff.

- stmt(e) = stmt(e0), and
- either
 - e, e0 are the first events appearing in runs x, y or
 - align(dep(e, x), dep(e0, y)) = true.
 - dep(e, x) == the event on which e is dynamically control dependent in run x.

LOCATION OF BRANCHES IS IMPORTANT

check the input

if (m == -1)

Favor branches near to the observable error

6.

7.

8.

9.

BIG PICTURE – TESTING AND DEBUGGING

- Why test?
 - Feel good about the program you have written.
- How does it relate to fault localization?
 - Testing identifies which inputs we run the program against.
 - What is a good set of inputs to test?
 - Once you run the selected inputs, for some of them the output is unexpected.
 - These are the failing tests.
 - These are subjected to fault localization.

VERIFICATION AND TESTING

- Model checking tries to check a specific property for all possible inputs
 - Same as checking a shallow property by exhaustive testing
 - Of course, the algorithms are more efficient than doing exhaustive testing.
- Testing checks an expected output for a specific program input.

Materials on model checking are studied in CS4211.