
TAINT ANALYSIS

CS3213 FSE

Prof. Abhik Roychoudhury

National University of Singapore

CS3213 Copyright by Abhik Roychoudhury 1

WHAT WE DID EARLIER

2

◦ System Requirements: Use-cases, Scenarios, Sequence Diagrams

◦ System structure: Class diagrams

◦ Discussion on semantics

◦ System behavior: State diagrams

◦ Discussion of the thinking behind your course project

◦ Static analysis and vulnerability detection: Secure SE

◦ Software Debugging

◦ White-box Testing: estimation of a given test-suite

◦ Today

◦ Debugging and Fault Localization

◦ Taint Analysis: effect of malicious inputs

TOPICS

3

• Taint Analysis

• Propagation of tainted inputs through the program

• Through data flows – passing tainted value from one variable to another

• Through implicit flows – a decision being made by a tainted value.

• Can study data dependencies for this purpose

• Why do we need taint analysis

• To understand the impact of malicious inputs.

• To “harden” programs against malicious inputs.

• …

DATA DEPENDENCY

4

• Data dependence: t is dependent on s if

• t uses a variable v which is defined in s

• There is a definition-clear path w.r.t variable v (a path in which v

is not set) between s and t

• Difference between static and dynamic data dependence is

implicit here.

• Exercise in class: show variants of the above definition for

static and dynamic dependencies with suitable code examples

DATA DEPENDENCE GRAPH

5

 A data dependence graph is:

 Nodes: as in the control flow graph (CFG)

 Edges: def-use (du) pairs, labelled with the variable name

Dependence

edges show this

x value could be

the unchanged

parameter or

could be set at

line D

x

STATIC & DYNAMIC DATA
DEPENDENCY

6

b=1;

If (a>1)

x=1;

else

x=2;

printf (“%d”, x);

1

2

3

4

5

6 Slicing Criterion

Data dependence:
t is dependent on s if t uses a variable v

which is defined in s
There is a definition-clear path w.r.t

variable v (a path in which v is not set)

between s and t

STATIC & DYNAMIC DATA
DEPENDENCY

7

• Static points-to analysis is always conservative

p.f = 1;

x= q.f;

printf (“%d”, x);

1

2

3

Slicing Criterion

p and q point to the same

object?

Data dependence:
t is dependent on s if t uses a variable v

which is defined in s
There is a definition-clear path w.r.t

variable v (a path in which v is not set)

between s and t

TAINT POLICY

8

• Taint Introduction

• All variables are, by default, untainted.

• All inputs are tainted?

• Taint propagation

• Specified as rules.

• Taint is simply a bit.

• Taint Checking

• When do you check?

• For example, while going to an address, need to check whether

the address is tainted.

TAINTED JUMP POLICY

9

• Protect from control flow hijacking

• Inputs are tainted.

• Propagate in a straightforward fashion

• In a binary operation, taint the result if any operand is tainted

• In assignment, taint the LHS if RHS is tainted.

• What to do in the case of a branch?

• Does not matter whether it is conditional or unconditional

branch

• Check that the jump target is not tainted.

EXAMPLE

10

1 x = 2 * get_input();

2 y = 5 * x;

3 go to y

Line 1: Taint source, and propagation

Line 2: Taint propagation

Line 3: Taint sink and check

EXAMPLE IN ACTION

• Taint policy might be tainted jump policy.

• Taint source is at get_input()

• Taint propagation

• RHS of line 1 is tainted.

• LHS of line 1 is tainted, so x is tainted.

• RHS of line 2 is tainted

• LHS of line 2 is tainted, so y is tainted.

• Taint check at line 3 --- control transfer to tainted address.

1 x = 2 * get_input();

2 y = 5 * x;

3 go to y

11

ADDRESS AND VALUE

• When we say “x” is tainted

• Do we mean the address of x is tainted?

• Or the value in x is tainted?

• Taint policies

• Track the status of addresses and memory values separately.

• The taint status of a pointer p, and the data object *p, are

independent.

1 x = 2 * get_input();

2 y = 5 * x;

3 go to y

12

UNDER-TAINTING

• Example

• Value of x is clearly tainted.

• The address (z + x) is therefore tainted.

• Value of y is NOT tainted, so jump in line 3 is allowed.

1 x = get_input();

2 y = load(z + x);

3 go to y

13

Untainted but attacker determined jump address!

OVER-TAINTING

• Tainted address policy: A memory cell is tainted if either

address or value is tainted.

• y is then always tainted and the jump is not allowed.

• Imagine the actual code in tcpdump program

• Read network packet.

• x = first byte of packet.

• z = base address of function_pointer_table

• y = function_pointer_table[z+x]

• Go to function pointed by y

1 x = get_input();

2 y = load(z + x);

3 go to y

14

TAINT MARKERS

• Capturing tainted or non-tainted for each variable – one bit

information.

• Instead can capture “taint markers” to explain the source

of taint.

• Each variable gets associated with a set of taint markers,

could be {}input a, b;

w = 2 * a;

x = b + 1;

y = w + 1;

z = x + y;

output z;

Taint marker set for z = {ta, tb}

What is the taint marker set for y?

15

IMPLICIT FLOWS

16

1 x = get_input();

2 if (x == 1) go to 3 else go to 4;

3 y = 1;

4 z = 42;

Line 4 is not affected by tainted input value. Whatever be the value, z
is being set to 42.

CONTROL DEPENDENCE -
EXAMPLE

17

A

B

C

D

E

F

G
F is control-dependent on B,

the last point at which its

execution was not inevitable

Execution of F is

not inevitable at B

Execution of F is

inevitable at E

CONTROL DEPENDENCE

18

 Data dependence: Where did these values come from?

 Control dependence: Which statement controls whether this
statement executes?
 Nodes: as in the CFG

 Edges: unlabelled, from entry/branching points to controlled blocks

DOMINATORS

19

 Pre-dominators in a rooted, directed graph can be used to
make this intuitive notion of “controlling decision” precise.

 Node M dominates node N if every path from the root to N
passes through M.
 A node will typically have many dominators, but except for the root,

there is a unique immediate dominator of node N which is closest to
N on any path from the root, and which is in turn dominated by all the
other dominators of N.

 Because each node (except the root) has a unique immediate dominator,
the immediate dominator relation forms a tree.

 Post-dominators: Calculated in the reverse of the control
flow graph, using a special “exit” node as the root.

EXAMPLE OF DOMINATOR

20

A

B

C

D

E

F

G

 A pre-dominates all nodes; G

post-dominates all nodes

 F and G post-dominate E

 G is the immediate post-

dominator of B

 C does not post-dominate B

 B is the immediate pre-

dominator of G

 F does not pre-dominate G

CONTROL DEPENDENCE

21

 We can use post-dominators to give a more precise definition of

control dependence:

 Consider again a node N that is reached on some but not all execution paths.

 There must be some node C with the following property:

 C has at least two successors in the control flow graph (i.e., it represents a control

flow decision);

 C is not post-dominated by N

 there is a successor of C in the control flow graph that is post-dominated by N.

 When these conditions are true, we say node N is control-dependent on node

C.

 Intuitively: C was the last decision that controlled whether N executed

CONTROL DEPENDENCE -
EXAMPLE

22

A

B

C

D

E

F

G
F is control-dependent on B,

the last point at which its

execution was not inevitable

Execution of F is

not inevitable at B

Execution of F is

inevitable at E

STATIC CONTROL DEPENDENCIES

2

3

Post-dominated: I,J – nodes in Control Flow Graph

I is post-dominated by J iff all paths from I to EXIT pass through J

I

J

EXIT

I

J

EXIT

YES

NO

STATIC CONTROL
DEPENDENCIES

2

4

I

U

V

J

EXIT

I not post-dom by J

U, V post-dom by J

Control dependence

I -> J

DYNAMIC CONTROL
DEPENDENCIES

2

5

• X is dynamically control dependent on Y if

• Y occurs before X in the execution trace

• X’s stmt. is statically control dependent on Y’s stmt.

• No statement Z between Y and X is such that X’s stmt. is statically control dependent on

Z’s stmt.

• Captures the intuition:

• What is the nearest conditional branch statement that allows X to be executed, in the

execution trace under consideration.

STATIC VS. DYNAMIC DATA
DEPENDENCE

26

• Static points-to analysis is always conservative

p.f = 1;

x= q.f;

printf (“%d”, x);

1

2

3

Slicing Criterion

p and q point to

the same object?

STATIC VS. DYNAMIC CONTROL
DEPENDENCE

27

input n;

if (n > 0 || n < -10){

S

}

…

Static control dependence

• B2 -> B4

• B3 -> B4

Dynamic control dependence

One of these, depending on value of n

Input n

n > 0

n < -10

NoYes

S

Yes No

…

B1

B2

B3

B4

Exit

DYNAMIC SLICING FOR
DEBUGGING : RECAP

Program

Input

Exec. Trace

Output

OK Unexpected, debug it

Dynamic Slice =

Bug Reportcriterion

Instrument

Dynamic

Slicing

28

BACK TO AN EXAMPLE

29

1 void foo(int a){
2 int x, y;

3 if (a > 10){
4 x = 1;

5 } else{

6 x = 2;
7 }

8 y = 10;
9 print x;

10 print y;

a is the input value (tainted)
Value of a affects which assignment of x is executed.

The output for x is thus tainted with {ta}

Input a == 1

Dynamic tainting with implicit flows

EXAMPLE (HARD)

30

1 void foo(int a){
2 int x, y;

3 if (a > 10){
4 x = 1;

5 } else{

6 x = 2;
7 }

8 y = 10;
9 print x;

10 print y;

a is the input value (tainted)
Value of a affects which assignment of x is executed.

The output for x is thus tainted with {ta}

Input a == 1

Dynamic tainting with implicit flows

Source:

Dytan: A Generic Dynamic Taint Analysis

Framework, by Clause, Li and Orso, ISSTA

2007, see LumiNUS for web-link.

REMOVING TAINT

• More and more variables get tainted as

• Execution trace is analyzed – dynamic taint analysis

• Program is analyzed – static taint analysis

• Taint markers are simply added, never removed?

• Consider b = a - a ;

• If a is tainted, b should also be tainted?

• But if a has no overflows etc, b is always zero

• In general, operations which return constant results should not

be tainted.

31

REAL EXAMPLES

32

static int amd81111e_read_phy(…)

{

reg_val = readl(mmio + PHY_ACCESS);

while (reg_val & PHY_CMD_ACTIVE)

;

}

AMD 8111e Network Driver
if (pas_model = pas_read(0xFF88))

{

char temp[100];

sprintf(temp, “%s rev %d”,

pas_model_names[(int) pas_model],

pas_read(0x2789));

}

Pro Audio Sound Driver

READINGS

• All you ever wanted to know about dynamic taint analysis

and forward symbolic execution (but might have been

afraid to ask)

• Schwartz, Avgerinos, Brumley

• Oakland 2010

• Supplementary reading

• Dytan: A generic dynamic taint analysis framework

• Clause, Li, Orso,

• ISSTA 2007.

33

